Цифровой частотомер. Резонансные частотомеры Принцип действия частотомера

Частотомер - прибор, предназначенный для измерения частоты периодического процесса спектра сигнала, а также для нахождения частот гармонических элементов спектра сигнала.

Частотомеры подразделяются относительно способа, по которому производятся измерения. К такому типу относят устройства прямой оценки, такие как аналоговые, и приборы сравнительной оценки, например резонансные, гетеродинные и электронно-счетные частотомеры.

Различаются по физическому значению определяемой величины: синусоидальные колебания рассматриваются при помощи аналоговых приборов; частоты гармонических элементов определяются гетеродинными, резонансными и вибрационными частотомерами; для исследования дискретных явлений применяются электронно-счетные и конденсаторные устройства.

Также существует деление относительно конструктивного решения частотомера. Приборы могут представлять собой щитовые, переносные, стационарные конструкции.

Частотомеры предназначены для произведения электроизмерительных и радиоизмерительных работ, поэтому они могут рассматриваться как электроизмерительные частотомеры и радиоизмерительные частотомеры. Электроизмерительные частотомеры включают в себя аналоговые стрелочные частотомеры всевозможных системных решений, вибрационные, конденсаторные, электронно-счетные частотомеры; радиоизмерительные частотомеры - резонансные, гетеродинные, конденсаторные, элект-ронносчетные частотомеры.

Аналоговые стрелочные частотомеры подразделяются относительно входящего в них измерительного приспособления: электродинамические, электромагнитные, магнитоэлектрические.

Разработаны частотомеры такого типа на основе применения частотозависимой цепи, характеризуемой взаимодействием модуля полного сопротивления относительно частоты. В аналоговом устройстве предусмотрен измерительный механизм, в роли которого в основном выступает логометр. Логометр представляет собой устройство с двумя плечами, на одно плечо поступает определяемый сигнал, проходя частотонезависимую цепь, на второе сигнал поступает сквозь частотозависимую цепь. Также логометр оснащается ротором со стрелкой, который в результате взаимодействия магнитных потоков фиксируется в положении, показываемом отношением токов в обмотках.

Вибрационные (или язычковые) частотомеры относятся к устройствам с наличием мобильного компонента, представленного в виде комплекта упругих деталей, например язычков или пластин. Подвижные части включаются в резонансное колебание в результате воздействия на них переменным магнитным или электрическим полем.

Гетеродинные частотомеры разработаны на принципе исследования сравнения между частотами входного сигнала и частотой перестраиваемого генератора - гетеродина, используя метод нулевых биений.
Рабочее состояние идентично работе резонансного частотомера, описанного ниже.

Резонансные частотомеры созданы на рассмотрении сравнительных характеристик частоты входного сигнала и собственной резонансной частоты перестраиваемого резонатора, в роли которого могут выступать колебательный контур^ отрезок волновода как объемный резонатор, четвертьволновой отрезок линии.

Цепочка действия следующая: контролируемый сигнал, проходя входные цепи, отправляется на резонатор, поступив на резонатор, сигнал, проходя детектор, отправляется на индикаторное приспособление, например гальванометр. Частотомер может оснащаться усилителями, которые усиливают чувствительную способность частотомера. Резонатор при помощи оператора настраивается относительно максимального значения индикатора, отсчет частоты производится относительно лимба настройки.
Электронно-счетные частотомеры очень широко примененяются, так как обладают широким диапазоном частот в пределах от долей герца до десятков мегагерц. Чтобы увеличить диапазон до сотен мегагерц и десятков гигагерц, частотомер оснащается вспомогательными блоками, которые характеризуются как делители частоты и переносчики частоты. Электронно-счетные частотомеры также отличаются универсальностью, достаточно высокой точностью. Частотомеры этого типа могут производить измерения периода движения импульсов, отслеживать промежутки бремени, возникающие между импульсами, исследовать взаимодействие двух" Частот. Отмечено их применение как счетчиков численности импульсов. Электронно-счетные частотомеры могут производить работу, сочетая несколько способов измерения, например гетеродинный и электронно-счетный способы, при этом существенно расширяя диапазон измерения, создавая нахождение несущей частоты импульсно-модулированных сигналов.

Наипростейший частотомер изготавливается при помощи логических элементов одной микросхемы, прибор такого типа используется для измерения частоты переменного напряжения в диапазоне от 20 Гц до 20 кГц. В этом приборе роль входного элемента играет триггер Шмита, который трансформирует на входе переменное напряжение синусоидальной формы в импульсы прямоугольной формы равной частоты. Для работы триггера требуется наличие определенной амплитуды входного сигнала, которая не должна превышать пороговую величину. Шкала частотомера задается как общая для всех диапазонов измерения, к тому же практически равномерная. Необходимо задать начальную границу и конечную границу шкалы относительно всех диапазонов, в основном это поддиапазон 20-200 Гц, под который ориентируются частотные границы остальных двух поддиапазонов. Для поддиапазона 200-2000 Гц результат измерения, полученный при помощи шкалы, увеличивается в 10 раз, а для поддиапазона 20 кГц увеличение производится в 100 раз.

Для повышения чувствительности частотомера используется введение вспомогательного усилителя входного сигнала, в роли которого могут выступить маломощный полупроводниковый транзистор или аналоговая микросхема в виде трехступенчатого усилителя для видеоканалов телевизионных приемников, характеризуемых наличием большого коэффициента усиления. Частота может иметь синусоидальные, прямоугольные, пилообразные колебания, а также колебания другого вида. Колебания, проходя первый конденсатор, поступают на вход микросхемы, затем производится усиление на выходе микросхемой через второй конденсатор, и колебания отправляются на вход триггера Шмита. Еще один конденсатор включен для ликвидации внутренней отрицательной обратной связи, которая уменьшает усилительные характеристики микросхемы.

Частотомер для измерения КСВ предназначен для нахождения величин мощности, при прямой отраженной волне отображается стрелочными приспособлениями с наличием подсвечиваемой шкалы. Частотомер такого типа работает в режиме калибровки и режиме определения в результате демпфониро-вания индикаторов, осуществляя измерения флуктуирующих сигналов. Прибор есть объединение двух частотомеров, его задняя панель оснащена двумя парами разъемов, при этом одна пара ориентирована на произведение замеров КСВ, мощности в частотном диапазоне 1,8-160 МГц, вторая пара рассчитана на диапазон 140-525 МГц.

Частотомер на базе звуковой карты разработан для произведения измерения частоты звукового сигнала, который непосредственно подается на линейный вход звуковой карты.

Вибрационные и аналоговые частотомеры используются в качестве контролеров сети электропитания. Гетеродинные частотомеры применяются для создания и отслеживания настройки, эксплуатации, для контролирования над приемопередающими устройствами, для измерения несущей частоты модулированных сигналов. Электронно-счетные частотомеры используются для обслуживания, регулировки, диагностики радиоэлектронных устройств разнообразного направления, также применяются для произведения контроля рабочих состояний радиосистем, технологических процессов. Резонансные частотомеры служат для настройки, обслуживания, а также для произведения контроля над действием приемопередающих приспособлений и определения несущей частоты модулированных сигналов.

Все сложные манипуляции, касающиеся электричества и домашней проводки, многие оставляют для профессионалов. Иногда проверить силу сопротивления, постоянное или переменное напряжение, а также количество полных циклов изменения тока нужно, а вызывать электрика нет возможности. В таком случае на помощь придет полезное приспособление – мультиметр. Не смотря на то, что данная функция не является основной, многие интересуются тем, как измерить частоту мультиметром.

Зачастую мультиметр-частотомер необходим для измерений в отдельных приборах, таких как генератор импульсного блока питания. Измерение сетевого значения лишь подтвердит наличие показателя в 50 Гц. Мультиметр, частота которого в большинстве моделей имеет диапазон до 30 Гц, применяется лишь в быту, для производственных целей используются более сложные приспособления, такие как высокочастотный искровой тестер. Необходимо детально ознакомиться не только с конструкцией измерительного аппарат, но и с особенностями измеряемого прибора, для того чтобы понять, как измерить частоту тока мультиметром.

Конструкция мультиметра

Тестер со встроенным частотомером - отличное приспособление для измерений, но существует ряд альтернативных методов, изучить которые можно ознакомившись со строением прибора. Основной состав данного аппарата включает в себя функции амперметра, омметра и вольтметра. Используют такое приспособление при замерах постоянного и переменного напряжения, а также сопротивления.

Наиболее распространенной моделью данного прибора является цифровая, поскольку она, в отличии от аналоговой, позволяет произвести более точные замеры. Классическая конструкция включает в себя:

  • Индикатор. Он расположен в верхней части аппарата и служит экраном, на котором отображаются данные проверки.
  • Переключатель. Позволяет выбирать пределы показателей и величины. Вокруг переключателя нанесена шкала, которая в большинстве современных аппаратов имеет пять диапазонов. Первое значение указывает на 200 Ом. Если установить переключатель на эту шкалу, то измерить сопротивление больше данного показателя не будет возможности. Также шкала включает в себя показатели переключения между постоянным и переменным током, и значок прозвонки.
  • Гнезда для щупов. Позволяют подключить к тестеру измеряемый прибор. В большинстве моделей в нижней части размещено три разъема.
    Для тех же, кто интересуется тем, как замерить частоту мультиметром, необходимо обратить внимание на модели со специальными функциями. Помимо данного показателя, померить тестером можно индуктивность, температуру, электрическую емкость. Наличие дополнительных функций существенно влияет на стоимость, потому не каждый может позволить себе приобрести для применения в быту такое приспособление. Отличным решением может стать приставка к мультиметру. Она позволяет при помощи аппарата со стандартным набором функций измерить нужный показатель.

Измерение частоты

Стоит напомнить, что интересуясь тем, как померить частоту мультиметром, предварительно важно ознакомиться с особенностями аппарата, который предстоит проверить. Только так можно достичь желаемого результата с максимально точными показателями. Измерение частоты мультиметром со специальной функцией является наиболее удобным, поскольку в данном случае нет необходимости в использовании специальных приставок.

Происходят такие замеры в несколько этапов:

  • В первую очередь необходимо проверить измеритель на точность. Известно, что в сети частота имеет значение 50 Гц. Чтобы определить погрешность в работе тестера, необходимо подсоединить его к розетке. Показатель, отличающийся от 50 Гц, и будет погрешностью измерительного аппарата.
  • Далее, при помощи измерительных щупов необходимо подсоединить тестер к измеряемому прибору. Предварительно ознакомившись с инструкцией использования тестера, можно узнать необходимое для точности проверки напряжение. Установив показатель напряжения на нужное значение, можно приступать непосредственно к определению полных циклов изменения тока.
  • После этого измерение частоты тестером будет зависеть только от того, как изменяется период переменного тока.

Многих также интересует, как проверить частоту мультиметром при помощи специальных приставок. Частотомер — приставка к мультиметру является отличной альтернативой дорогим измерителям с множеством функций. Многие тестеры с функцией определения циклов изменения тока имеют низкую чувствительность, потому дают неточные показатели. Приставка является дополняющим средством к измерителю. Она позволяет преобразовать полученные данные в напряжение.

Чтобы измерение частоты тока мультиметром имело минимальную погрешность, необходимо правильно подсоединить частотомер. Переключатель рода работ в измерительном приборе необходимо настроить так, чтобы переключатель указывал на постоянное напряжение. В таком случае нет необходимости перестраивать приставку при подключении к аппарату с входным сопротивлением, превышающим 1 мОм.

Измерение частоты тестером может давать разные результаты, зависящие в первую очередь от точности работы аппарата. Потому при выборе способа проверки необходимо решить, насколько серьезно влияет на показатели погрешность прибора и/или приставки.

Цифровые частотомеры - довольно распространенные измерительные приборы, используемые в самых различных отраслях науки, техники, промышленности для оценки частотно-временных параметров электрических сигналов. Они работают в очень широком диапазоне значений измеряемых частот периодических сигналов (или их периода).

Современные цифровые частотомеры обеспечивают самые высокие метрологические характеристики (точность и разрешающую способность) среди всех прочих ЦИП, отличаются достаточно высоким быстродействием, широкими функциональными возможностями, простотой эксплуатации, высокой надежностью.

Помимо измерения частотно-временных параметров периодических сигналов, современные цифровые частотомеры применяются и для измерения различных физических величин. Для этого необходимо подключать к ним вспомогательные первичные измерительные преобразователи (датчики), имеющие выходные сигналы, частота или период (длительность) которых пропорциональны измеряемой величине. Например, цифровые частотомеры можно использовать для измерения скорости вращения вала двигателя , расхода жидкости в трубопроводе, скорости потока воздуха . Они также находят применение в качестве генераторов стабильных частот и таймеров , постоянных или программируемых интервалов времени . Кроме того, с помощью цифровых частотомеров можно легко организовать подсчет числа импульсов (числа событий).

Практически все цифровые частотомеры обеспечивают два основных режима работы: измерения частоты и измерения периода (длительности интервала времени).

Режим измерения частоты . Упрощенная структура цифрового частотомера, реализующая режим измерения частоты , показана на (рис. 8.22 а ), а временные диаграммы работы в этом режиме приведены на (рис. 8.22 б ). Исследуемый периодический сигнал 1 (соответственно диаграмма 1) подается на вход усилителя -ограничителя УО , где преобразуется в последовательность прямоугольных импульсов 2 (диаграмма 2) фиксированной амплитуды , частота которых равна частоте f x входного сигнала . Далее этот сигнал поступает на вход электронного ключа , которым управляет таймер, периодически замыкающий его на постоянный стабильный интервал времени 3 (диаграмма 3), например T 0 = 1c . Сформированная таким образом серия импульсов 4 (диаграмма 4) поступает на вход счетчика Сч , содержимое которого 5 в начале интервала T 0 равно нулю , а в конце интервала счета равно числу поступивших импульсовN x . Это число прямо пропорционально измеряемой частотеf x входного сигнала;

N x = Ent [T 0 /T x ] = Ent [T 0 f x ],

где Ent [...] - [...];T x - период входного сигнала (T x = 1/f x ); f x - частота входного сигнала .

Содержимое счетчика 5 запоминается в буферном запоминающем устройстве ЗУ и хранится там до окончания следующего цикла измерения и переписи нового результата . Одновременно результат поступает на цифровое отсчетное устройство (индикатор Ин ). Если, например, в течение интервала T 0 = 1c на вход счетчика поступило 254 импульса, то, следовательно, частота входного сигнала f x = 254Гц . Прибор работает циклически , т.е. в начале каждого нового цикла счетчик обнуляется . Таким образом, результат измерения периодически обновляется. Отметим, что форма периодического сигнала значения не имеет.

В реальных цифровых частотомерах имеется несколько диапазонов измерения частоты, т.е. формируется несколько различных по длительности стабильных интервалов T 0 (например, T 01 = 0,1c ; T 02 = 1.0c ; T 03 = 10c ). При работе с цифровым частотомером в режиме измерения частоты важным является правильный выбор диапазона, т.е. выбор интервала T 0 , в течение которого происходит подсчет импульсов. Чем больше импульсов N x поступит в счетчик (в пределах, конечно, максимально возможного) на интервале T 0 , тем больше будет значащих цифр результата измерения на индикаторе, тем, следовательно, лучше. Общая погрешность F f x складывается из двух составляющих: погрешности дискретности F 1 и погрешности ∆ F 2 , вызванной неточностью (неидеальностью) задания интервала времениT 0 .

Погрешность дискретности F 1 неизбежно присутствует в любом аналого -цифровом преобразовании . Отношение T 0 /T x может быть любым, так как частота входного сигнала может иметь бесконечное множество различных значений. Понятно, что в общем случае отношение T 0 /T x - дробное число . А поскольку число импульсов N x , подсчитываемых счетчиком, может быть только целым , то в процессе такого автоматического округления возникает погрешность дискретности .

При одном и том же постоянном значении интервала T 0 , в зависимости от расположения (случайного) во времени входного сигнала и интервала T 0 , число импульсов, приходящихся на интервал T 0 , может отличаться в ту или другую сторону на единицу . Две разные ситуации при одинаковых исходных условиях показаны на (рис. 8.23, а ): в первом случае (диаграмма 1) число импульсов, поступивших в счетчик, равно пяти, а во втором (диаграмма 2) случае число импульсов равно шести.

Погрешность ∆ F 1 - случайная величина , поскольку входной сигнал и сигнал таймера не связаны между собой . Максимально возможное значение этой погрешности неизменно и составляет одну единицу младшего разряда - один квант:

F 1 = ±1 импульс = ±1/T 0 .

Таким образом, ∆ F 1 - это аддитивная погрешность , т.е. не зависящая от значения измеряемой величины - частоты f x (рис. 8.23 б ).

Погрешность ∆ F 2 , вызванная неточностью (неидеальностью) задания интервалаT 0 , показана на (рис. 8.24 а ). Если бы длительность интервала T 0 имела строго номинальное значение , то число импульсов, поступивших в счетчик, было бы равно N 1 (см. рис. 8.24 а ). Если же интервал T 0 будет несколько больше номинального и составит T 0 + ∆T 0 , то при той же измеряемой частоте f x на счетчик поступит больше импульсов: N 2 > N 1 (см. рис. 8.24 б ).

Неточность ∆T 0 задания этого интервала приводит к появлению мультипликативной , т.е. линейно зависящейот значения измеряемой частотыf x , составляющей:

F 2 = ±f x T 0 /T 0 .

Суммарная абсолютная погрешность F результата измерения частоты f x и суммарная относительная погрешность δ F , %, соответственно;

F = ∆ F 1 + ∆ F 2 = ±;

δ F = δ F 1 + δ F 2 = ±.

Графическая иллюстрация поведения составляющих и суммарных абсолютной и относительной погрешностей результата измерения частоты f x приведена на (рис. 8.25 а и 8.25 б ) соответственно.

Рассмотрим пример определения погрешностей результата измерения частоты. Предположим, известны значения интервала T 0 = 1c и возможная погрешность его задания ∆T 0 = ±2мс . Получен результат измерения частоты f x = 1кГц .

Значения абсолютных аддитивной ∆ F 1 и мультипликативной ∆ F 2 погрешностей соответственно, Гц :

F 1 = ±1/T 0 = ±1; f x T 0 /T 0 = ±1000 2 10 ‒3 / 1 = ±2.

Значения относительных аддитивной δ F 1 , и мультипликативной δ F 2 погрешностей, %, определим обычным образом:

δ F 1 = (∆ F 1 /f x )100 = ±(1/ 1000)100 = ±0,1;

δ F 2 = (∆ F 2 /f x )100 = ±(2/ 1000)100 = ±0,2.

Суммарные абсолютная ∆ F Гц , и относительная δ F %, погрешности результата измерения частоты f x соответственно:

F = ∆ F 1 + ∆ F 2 = ±3;

δ F = δ F 1 + δ F 2 = ±3.

Режим измерения периода . Упрощенная структура цифрового частотомера в режиме измерения периода приведена на (рис. 8.26 а ), а временные диаграммы - на (рис. 8.26 б ). В этом режиме входной периодический сигнал 1 (соответственно диаграмма 1) любой формы подается на вход формирователя периода ФП , где преобразуется в прямоугольный сигнал 2 (диаграмма 2) фиксированной амплитуды , длительность которого T x равна периоду входного сигнала .

Далее этот сигнал поступает на управляющий вход электронного ключа и замыкает его на время T x . На входе электронного ключа - прямоугольные импульсы 3 (диаграмма 3) стабильной известной частоты F 0 , постоянно поступающие с выхода генератора тактовых импульсов ГТИ . Таким образом, на выходе ключа формируется серия прямоугольных импульсов 4 (диаграмма 4), в которой число импульсов N x пропорционально длительности T x :

N x = Ent [T x /T 0 ] = Ent [T x F 0 ],

где Ent [...] - оператор определения целой части выражения [...]; T 0 - период тактовых импульсов .

Эта серия подается в запоминающее устройство ЗУ, где и хранится до окончания следующего цикла и переписи нового результата.

Индикатор Ин позволяет считывать результат измерения. Если, например, частота импульсов генератора тактовых импульсов была установлена F 0 = 1кГц , а содержимое счетчика Сч в конце интервала счета оказалось равным N x = 1520, то период входного сигнала T x = 1,52c .

И в этом режиме цифровой частотомер работает циклически , т.е. в начале каждого нового цикла преобразования счетчик обнуляется . Таким образом, результат измерения периодически обновляется.

Обычный цифровой частотомер имеет высокочастотный стабильный генератор тактовых импульсов и цифровой делитель частоты, с помощью которого формируется несколько разных тактовых частот F 0 (например, F 01 = 1.0кГц ; F 02 = 10кГц ; F 03 = 100кГц ; F 04 = 1,0МГц ), что означает наличие нескольких возможных диапазонов измерения периода.

Погрешность T результата измерения периода (интервала времени) T x , как и в режиме измерения частоты, содержит две составляющие: погрешность дискретности ∆ T 1 и погрешность ∆ T 2 , вызванную неточностью (неидеальностью) значения F 0 частоты генератора тактовых импульсов.

Погрешность дискретности ∆ T 1 , по природе аналогична рассмотренной в первом режиме и представляет собой аддитивную погрешность (рис. 8.27 а ). Появление второй составляющей - погрешности ∆ T 2 , вызванной неточностью (неидеальностью) иллюстрирует (рис. 8.27 б ).

Если бы частота сигнала генератора тактовых импульсов была строго равна номинальной F 0 , то число импульсов, поступивших в счетчик в течение интервала T x , было бы равно N 1 . Если же частота сигнала генератора тактовых импульсов будет, например, несколько больше номинальной и составит F 0 + ∆F 0 , то на том же интервале T x в счетчик поступит больше импульсов: N 2 > N 1 . Эта составляющая погрешности мультипликативна, т.е. ее значение тем больше, чем больше длительность измеряемого периода (интервала) T (рис. 8.27 в).

Суммарная абсолютная погрешность ∆ T результата измерения периода T x и суммарная относительная погрешность δ T %, соответственно:

T = ∆ T 1 + ∆ T 2 = ±;

δ T = δ T 1 + δ T 2 = ±(1/F 0 T x + ∆F 0 /F 0 ).

Отдельные составляющие и суммарные погрешности результата измерения периода T x в абсолютном и относительном видах соответственно графически представлены на (рис. 8.28). В этом режиме, чем меньше измеряемый период T x (чем больше значение частоты f x ), тем хуже, так как тем больше относительная погрешность. Для измерения сравнительно малых значений периода T x (или сравнительно высоких частот) следует использовать первый режим цифрового частотомера - режим измерения частоты.

Контрольные вопросы

1 Для измерения, каких физических величин помимо измерения частотно-временных параметров применяются цифровые частотомеры?

2 Каким образом работает цифровой частотомер в режимах измерения частоты?

3 Какие погрешности возникают при работе цифрового частотомера в режимах измерения частоты?

4 Каким образом работает цифровой частотомер в режимах измерения периода?

5 Какие погрешности возникают при работе цифрового частотомера в режимах измерения периода?


Похожая информация.


Частотомер

прибор для измерения частоты периодических процессов (колебаний). Частоту механических колебаний обычно измеряют с помощью вибрационных механических Ч. и электрических Ч., используемых совместно с преобразователями механических колебаний в электрические. Простейший вибрационный механический Ч., действие которого основано на Резонанс е, представляет собой ряд упругих пластин, укрепленных одним концом на общем основании. Пластины подбирают по длине и массе так, чтобы частоты их собственных колебаний составили некую дискретную шкалу, по которой и определяют значение измеряемой частоты. Механические колебания, воздействующие на основание Ч., вызывают вибрацию упругих пластин, при этом наибольшая амплитуда колебаний наблюдается у той пластины, у которой частота собственных колебаний равна (или близка по значению) измеряемой частоте.

Для измерения частоты электрических колебаний применяют электромеханические, электродинамические, электронные, электромагнитные, магнитоэлектрические Ч. Простейший электромеханический Ч. вибрационного типа состоит из электромагнита и ряда упругих пластин (как в механическом Ч.) на общем основании, соединённом с якорем электромагнита (рис. 1 ). Измеряемые электрические колебания подают в обмотку электромагнита; возникающие при этом колебания якоря передаются пластинам, по вибрации которых определяют значение измеряемой частоты. В электродинамических Ч. основным элементом является Логометр , в одну из ветвей которого включен Колебательный контур , постоянно настроенный на среднюю для диапазона измерений данного прибора частоту (рис. 2 ). При подключении такого Ч. к электрической цепи переменного тока измеряемой частоты подвижная часть логометра отклоняется на угол, пропорциональный сдвигу фаз между токами в катушках логометра, который зависит от соотношения измеряемой частоты и резонансной частоты колебательного контура. Погрешность измерений электродинамического Ч. 10 -1 ―5·10 ―2 .

Частоту электромагнитных колебаний в диапазоне радиочастот и СВЧ измеряют при помощи электронных Ч. (Волномер ов) - резонансных, гетеродинных, цифровых и др.

Действие резонансного Ч. основано на сравнении измеряемой частоты с частотой собственных колебаний электрического контура (или резонатора СВЧ), настраиваемого в резонанс с измеряемой частотой. Резонансный Ч. состоит из колебательного контура с петлёй связи, воспринимающей электромагнитные колебания (радиоволны), Детектор а, усилителя и Индикатор а резонанса (рис. 3 ). При измерении контур настраивают при помощи калиброванного конденсатора (или поршня резонатора в диапазоне СВЧ) на частоту воспринимаемых электромагнитных колебаний до наступления резонанса, который регистрируют по наибольшему отклонению указателя индикатора. Погрешность измерений таким Ч. 5 . 10 ―3 -5·10 ―4 . В гетеродинных Ч. измеряемая частота сравнивается с известной частотой (или её гармониками) образцового генератора - Гетеродин а. При подстройке частоты гетеродина к частоте измеряемых колебаний на выходе смесителя (где происходит сравнение частот) возникают Биения , которые после усиления индицируются стрелочным прибором, телефоном или (реже) осциллографом. Относительная погрешность гетеродинных Ч. 5·10 ―4 -5·10 ―6 .

Широкое применение получили цифровые Ч., принцип действия которых заключается в подсчёте числа периодов измеряемых колебаний за определённый промежуток времени. Электронно-счётный Ч. состоит из формирующего устройства, преобразующего синусоидальное напряжение измеряемой частоты в последовательность однополярных импульсов, временного селектора импульсов, открываемого на определённый промежуток времени (обычно от 10 ―4 до 10 сек ), электронного счётчика, отсчитывающего число импульсов на выходе селектора, и цифрового индикатора. Современные цифровые Ч. работают в диапазоне частот 10 ―4 ―10 9 гц , относительная погрешность измерения 10 ―9 ―10 ―11 ; чувствительность 10 ―2 в. Такие Ч. используются преимущественно при испытаниях радиоаппаратуры, а с применением различных измерительных преобразователей (См. Измерительный преобразователь) - для измерения температуры, вибраций, давления, деформаций и других физических величин.

Разновидностью образцовых Ч., высшей точности являются эталоны и стандарты частоты, погрешность которых лежит в пределах 10 ―12 -5 . 10 ―14 . Измерителем частоты вращения валов машин и механизмов служит Тахометр .

Лит.: Мирский Г. Я., Радиоэлектронные измерения, 3 изд., М., 1975; Кушнир Ф. В., Радиотехнические измерения, 3 изд., М., 1975.

Е. Г. Билык.

Рис. 2. Схема электродинамического частотомера: K - неподвижная катушка логометра из двух одинаковых частей для создания равномерного магнитного поля; К 1 и К 2 - подвижные катушки, жёстко скреплённые под углом 90° и взаимодействующие с катушкой K; C, L, R - электрические ёмкость, индуктивность и сопротивление колебательного контура; С 1 - конденсатор, обеспечивающий сдвиг фаз (90°) между U и I 1 ; U - напряжение, частота которого измеряется; I и I 1 - токи в ветвях логометра.

Рис. 3. Схема электрического резонансного частотометра: L св - петля (виток) связи; L, C - колебательный контур (C - калиброванный конденсатор переменной ёмкости); Д - детектор (полупроводниковый диод); У - усилитель; И - индикатор (микроамперметр, милливольтметр).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Частотомер" в других словарях:

    Частотомер … Орфографический словарь-справочник

    Прибор для измерения частоты периодических процессов (колебаний). Напр., частоту механических колебаний измеряют вибрационным и электрическим частотомером (в сочетании с преобразователями механических колебаний в электрические), частоту… … Большой Энциклопедический словарь

    ЧАСТОТОМЕР, частотомера, муж. (тех.). Прибор для измерения частоты электрического тока. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

    Прибор для измерения частоты периодич. процессов (гл. обр. частоты электрич. сигналов). Различают Ч. с электроизмерит. механизмами, электронные аналоговые и цифровые Ч. Одним из простейших явл. Ч. с вибрационным электроизмерительным механизмом.… … Физическая энциклопедия

    - (Frequency meter) прибор для измерения частоты переменного тока. По конструкции бывают вибрационные (наиболее распространенные) и вольтметровые. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР,… … Морской словарь Справочник технического переводчика

    Прибор для измерения частоты периодических механических, электрических и электромагнитных колебаний. Для измерения механических колебаний пользуются вибрационными частотомерами. Простейший механический вибрационный частотомер представляет собой… … Энциклопедия техники

    Прибор для измерений частоты периодич. процессов (колебаний). Широкий диапазон измеряемых частот (от тысячных долей Гц до десятков ГГц) и допускаемых погрешностей измерений (от единиц до 10 8%) обусловливает многообразие Ч. (см. Вибрационный… … Большой энциклопедический политехнический словарь

    - (неправ. частотометр) измерительный прибор для определения частоты периодического процесса или частот гармонических составляющих спектра сигнала. Содержание 1 Классификация 2 Электронно счетные частотомеры … Википедия

Частотомер представляет собой специализированный измерительный прибор, созданный для определения частоты, то есть периода колебаний электросигнала. Частота – один из основных показателей тока. Она определяет число колебаний за определенный временной цикл. Измеряется частота в герцах, она обратно пропорциональна периоду колебаний. Элементы оборудования, работающие на электрическом токе, должны работать на токах определенной частоты. Именно поэтому так важны устройства для определения частоты протекающего тока.

Зная частоту, можно своевременно настроить, обслужить, диагностировать и выполнить регулировку оборудования разнообразного назначения, осуществить контроль протекания технологических процессов. Приборы для измерения частоты могут иметь разное конструктивное исполнение, что определяется их назначением и особенностями работы. Подобные приборы требуются во многих областях науки и промышленности. Особенное значение приборы для измерения частоты имеют в телекоммуникационной, радиоэлектронной и электротехнической деятельности.

Виды

Частотомер, исходя из метода измерения, может быть двух типов:
  1. Аналоговые, которые предназначены для оценки частоты.
  2. Приборы сравнения, к которым относятся резонансные, гетеродинные, электронно-счетные устройства и так далее.

Аналоговые устройства предназначены в основном для определения колебаний синусоидального характера. Приборы сравнения применяются для измерения дискретных частот, гармонических параметров и так далее. Подобные устройства используются в большей части случаев для измерения частоты гармонического характера, находящихся в диапазоне 20-2500 Герц. Однако они имеют ограниченность использования, что вызвано невысокой точностью и высокой потребляемой мощностью.

В зависимости от типа конструктивного исполнения устройства бывают стационарными, переносными, либо щитовыми. Конкретный тип конструкции определяется областью применения устройства.

Больше всего распространены устройства прямого отсчета, то есть цифровые устройства. Они позволяют с удобством и высокой точностью измерять необходимые параметры частоты. Главная их особенность в том, что они подсчитывают число импульсов, поступающих от входного формирователя за конкретный период времени. Данный прибор способен измерить не только частоту, но также периоды времени и число импульсов.

Цифровые устройства позволяют выполнять с большой точностью исследования частот импульсного и гармонического характера в пределах 10 Гц – 50 ГГц. Подобные приборы в основном применяются для измерения частот, временных параметров.

По принципу действия подобный частотомер можно классифицировать на 4 группы:
  1. Устройства средних значений, которые являются наиболее распространенными. При помощи этих устройств можно измерять среднее значение частоты за определенное время. Пределы измеряемых частот составляют от 10 герц до 100 мегагерц. При использовании специальных преобразователей данный предел можно расширить до 1000 мегагерц.
  2. Устройства мгновенных значений. При помощи них можно узнать частоту в узком диапазоне. Подобные приборы чаще всего применяют для измерения инфранизких и низких частот.
  3. Устройства номинальных значений применяются с целью исследования изменений частот в узких пределах. Процентные устройства измеряют частоту в относительных единицах.
  4. Следящие устройства лучше всего подходят для измерения средних частот. Они измеряют частоту непрерывно. Если говорить прямо, то все электронные, а также электромеханические устройства являются следящими. К их преимуществам можно отнести возможность создания отчетов в каждый момент времени. К следящим устройствам также относятся и многие цифровые приборы.

В отдельную категорию можно выделить устройства, которые расширяют функционал следящих устройств. Это могут быть сервисные или универсальные приборы. Сервисные устройства имеют малые габариты, так как в них применяются интегральные схемы. Чаще всего они применяются в качестве автономных устройств, переносных, а также встроенных агрегатов в структуре автоматизированных систем. Их можно использовать для измерения разных величин.

Универсальные аппараты в большинстве случаев многофункциональны. Они имеют конструкцию, которая позволяет задействовать сменные блоки. Благодаря этому можно существенно повысить их функциональность. Специализированные устройства заточены под конкретные параметры измерений, поэтому в большей части случаев у них более простая конструкция.

Устройство

Частотомер может иметь разное конструктивное исполнение. К примеру, электронно-счетное устройство выделяется блочно-модульным исполнением. Его базу составляет кроссплата, где монтируются модульные платы. От них выходят проводники на управляющие и индикаторные элементы, в том числе входящие и выходящие разъемы. Лампы и индикаторы находятся в модуле, которой расположен за панелью. Индикация осуществляется динамически.

В отдельной кассете находится блок питания и генератор. Имеется возможность подключить внешний генератор. Для защиты от перегрева используется термостат. Вычисление осуществляется с помощью декад и делителей. Кроме того, в состав устройства входят умножитель, узел сброса и самонастройки, автоматический блок и входной формирователь. В качестве элементной базы для этих элементов используются транзисторы. Подобные устройства уже считаются устаревшими, но все равно иногда применяются.

Самый простой частотомерпроизводится на базе микросхем. В качестве входного элемента используется триггер Шмидта, трансформирующий напряжение синусоидального характера в импульсы одинаковой частоты. Чтобы триггер нормально работал, требуется конкретная амплитуда входного сигнала. Важно, чтобы она не была выше заданной величины. Чтобы повысить чувствительность, в устройстве может применяться дополнительный усилитель входящего сигнала. К примеру, для этого может быть использован полупроводниковый транзистор малой мощности либо аналоговая микросхема.

Когда колебания проходят через конденсатор, происходит усиление его показателей посредством второго конденсатора. После этого колебания направляются на вход триггера. Следующий конденсатор убирает обратную связь. Чтобы пользователь мог увидеть показатели частоты, используются стрелочные приспособления, а также подсвечиваемая шкала.

Принцип действия

Частотомерпозволяет определить частоту тока в элементе какого-нибудь оборудования. Например, Вам надо получить схему, которая состоит из 2-х блоков: передатчика и приемника. До готовности передатчика можно задействовать генератор сигналов. Большинство генераторов способно обеспечить создание сигналов с разными параметрами.

Чтобы точно определить частоту сигнала необходимо подключить генератор к входу устройства для измерения частоты. У ряда генераторов имеются встроенные модули, предназначенные для определения частоты. Цифровой частотомер использует счетно-импульсный принцип, благодаря которому счетный блок подсчитывает число импульсов, поступающих на вход за конкретный период времени. То есть устройство осуществляет подсчет числа импульсов, период времени определяется с помощью опорных частот.

На входе устройства измеряемое колебание усиливается, превращаясь в последовательность усиленных импульсов с такой же частотой, которую и необходимо измерить. В то же время кварцевый генератор создает последовательность эталонных импульсов, которые приводят к старту схемы управления. В качестве нее выступает стробирующая схема. Она задает стандартное время измерений, за которое подаются колебания на вход. Счетчик устройства подсчитывает импульсы за данный период времени. Их количество выводится на цифровом индикаторе. В случае необходимости нового измерения имеется кнопка, которая направляет сигнал на схему сброса. Она ставит счетчик в нулевое положение.

Применение

Универсальный частотомер в большинстве случаев используется для автоматизированного определения частоты, непрерывности сигналов, времени, пика напряжения, которое является входящим. Также устройство применяется с целью исследования времени прохождения импульсов, времени, фазового сдвига между сигналов, исследования отношений частотных характеристик, подсчитывания количества импульсов.

Частотомер в большей части случаев используется с целью настраивания, испытания и калибрующих работ в разнообразных устройствах. К примеру, это могут быть преобразователи, генераторы, фильтрующие устройства. Частотомеры часто применяют для настраивания оборудования связи и так далее. Они довольно часто применяются в связном деле, измерительной технике, навигации, локации, ядерной физике, электронике, а также при создании, изготовлении и эксплуатации радиоэлектронных устройств.



error: Контент защищен !!