Почему спутники не сходят с орбиты? Почему геостационарные спутники не падают на землю? Почему мкс не падает с орбиты

Или почему спутники не падают? Орбита спутника представляет собой хрупкий баланс между инерцией и гравитацией. Сила тяжести непрерывно притягивает спутник к Земле, в то время как инерция спутника стремится поддерживать его движение прямолинейным. Если бы не было силы тяжести, инерция спутника отправила бы его прямо с земной орбиты в открытый космос. Однако в каждой точке орбиты сила тяжести держит спутник на привязи.

Чтобы достичь равновесия между инерцией и силой тяжести, спутник должен иметь строго определенную скорость. Если он летит слишком быстро, инерция преодолевает силу тяжести и спутник покидает орбиту. (Вычисление так называемой второй космической скорости, позволяющей спутнику покидать околоземную орбиту, играет важную роль в запуске межпланетных космических станций.) Если спутник движется слишком медленно, сила тяжести победит в борьбе с инерцией и спутник упадет на Землю. Именно это случилось в 1979 году, когда американская орбитальная станция Скайлэб начала снижаться в результате растущего сопротивления верхних слоев земной атмосферы. Попав в железные клещи гравитации, станция вскоре упала на Землю.

Скорость и расстояние

Поскольку земное притяжение ослабевает с расстоянием, скорость, необходимая для удержания спутника на орбите, изменяется с высотой над уровнем моря. Инженеры могут вычислять, как быстро и как высоко спутник должен вращаться на орбите. Например, геостационарный спутник, расположенный всегда над одной и той же точкой земной поверхности, должен совершать один виток за 24 часа (что соответствует времени одного оборота Земли вокруг своей оси) на высоте 357 километров.

Сила тяжести и инерция

Балансирование спутника между силой тяжести и инерцией может быть сымитировано вращением груза на привязанной к нему веревке. Инерция груза стремится переместить его подальше от центра вращения, в то время как натяжение веревки, выполняющее роль гравитации, удерживает груз на круговой орбите. Если веревку перерезать, груз улетит по прямолинейной траектории перпендикулярно радиусу своей орбиты.

Сегодня мы можем выйти за пределы своего дома ранним утром или вечером и увидеть яркую космическую станцию, пролетающую над головой. Хотя космические путешествия стали обыденной частью современного мира, для многих людей космос и вопросы, связанные с ним, остаются загадкой. Так, например, многим людям непонятно, почему спутники не падают на Землю и не улетают в космос?

Элементарная физика

Если мы бросим мяч в воздух, он скоро возвратится на Землю, как и любой другой объект, как, например, самолет, пуля или даже воздушный шар.

Чтобы понять, почему космический корабль способен вращаться вокруг Земли, не падая, по крайней мере, при нормальных обстоятельствах, нужно провести мысленный эксперимент. Представьте, что вы находитесь на но на ней нет воздуха и атмосферы. Нам нужно избавиться от воздуха, чтобы мы могли сделать нашу модель максимально простой. Теперь, вам придется мысленно подняться на вершину высокой горы с орудием, чтобы понять, почему спутники не падают на Землю.

Поставим эксперимент

Направляем ствол орудия ровно горизонтально и стреляем к западному горизонту. Снаряд вылетит из дула с огромной скоростью и направится на запад. Как только снаряд покинет ствол, он начнет приближаться к поверхности планеты.

Поскольку пушечный шар быстро продвигается на запад, он упадет на землю на некотором расстоянии от вершины горы. Если мы будем продолжать увеличивать мощность пушки, снаряд упадет на землю намного дальше от места выстрела. Поскольку наша планета имеет форму шара, каждый раз, когда пуля будет вылетать из дула, она будет падать дальше, потому что планета также продолжает вращаться вокруг своей оси. Вот почему спутники не падают на Землю под действием силы тяжести.

Поскольку это мысленный эксперимент, мы можем сделать выстрел пистолета более мощным. В конце концов, мы может вообразить ситуацию, в которой снаряд двигается с той же скоростью, что и планета.

На этой скорости, без сопротивления воздуха, которое его замедляет, снаряд будет продолжать вращаться вокруг Земли вечно, поскольку он будет непрерывно падать к планете, но Земля также будет продолжать падать с той же скоростью, как бы «ускользая» от снаряда. Это условие называется свободным падением.

На практике

В реальной же жизни, все не так просто, как в нашем мысленном эксперименте. Теперь мы должны иметь дело с сопротивлением воздуха, которое вызывает замедление скорости движения снаряда, в конечном итоге лишая его скорости, необходимой ей для того, чтобы оставаться на орбите и не падать на Землю.

Даже на расстоянии нескольких сотен километров от поверхности Земли все еще существует некоторое сопротивление воздуха, которое действует на спутники и космические станции и приводит к их замедлению. Это сопротивление в конечном итоге приводит к тому, что космический корабль или спутник попадают в слои атмосферы, где они обычно сгорают из-за трения с воздухом.

Если бы космические станции и другие спутники не имели ускорения, способного подтолкнуть их выше по орбите, все они безуспешно упали бы на Землю. Таким образом, скорость спутника регулируется таким образом, чтобы он падал на планету с той же скоростью, с которой планета по кривой движется по направлению от спутника. Вот почему спутники не падают на Землю.

Взаимодействие планет

Тот же процесс применим к нашей Луне, которая перемещается на орбите свободного падения вокруг Земли. Каждую секунду Луна приближается примерно на 0,125 см к Земле, но в то же время поверхность нашей сферической планеты смещается на то же расстояние, уклоняясь от Луны, поэтому относительно друг друга они остаются на своих орбитах.

Нет ничего волшебного в отношении орбит и такого явления, как свободное падение — они лишь объясняют, почему спутники не падают на Землю. Это просто сила тяжести и скорость. Но это невероятно интересно, впрочем, как и все остальное, связанное с космосом.

Международная космическая станция (МКС) - это масштабный и, пожалуй, самый сложный по своей организации реализованный технический проект за всю историю человечества. Ежедневно сотни специалистов по всему миру трудятся над тем, чтобы МКС могла полноценно выполнять свою основную функцию - быть научной площадкой для изучения безграничного космического пространства и, конечно же, нашей планеты.

Когда смотришь новости про МКС, то возникает множество вопросов, относительно того, как космическая станция вообще может работать в экстремальных условиях космоса, как она летает по орбите и не падает, как в ней могут жить люди, не страдая от высоких температур и солнечной радиации.

Изучив данную тему и собрав всю информацию в кучу, признаться, я вместо ответов получил еще больше вопросов.

На какой высоте летает МКС?

МКС летает в термосфере на высоте примерно 400 км от Земли (для информации - расстояние от Земли до Луны составляет примерно 370 тысяч км). Сама термосфера представляет собой атмосферный слой, который, по сути, еще не совсем является космосом. Этот слой простирается от Земли на расстояние от 80 км до 800 км.

Особенность термосферы в том, что температура с высотой повышается и при этом может значительно колебаться. Выше 500 км возрастает уровень солнечной радиации, который может запросто вывести из строя технику и негативно повлиять на здоровье космонавтов. Поэтому МКС выше 400 км не поднимается.

Так выглядит МКС с Земли

Какая температура за боротом МКС?

Информации на данную тему совсем мало. Разные источники говорят по-разному. Говорят, что на уровне 150 км температура может достигать 220-240°, а на уровне 200 км более 500°. Выше температура продолжает расти и на уровне 500-600 км она уже якобы превышает 1500°.

По словам самих космонавтов, на высоте 400 км, на которой летает МКС, температура постоянно меняется в зависимости от светотеневой обстановки. Когда МКС находится в тени, температура за бортом опускается до -150°, а если она под прямыми лучами солнца, то температура повышается до +150°. И это уже даже не парилка в бане! Как при такой температуре космонавты вообще могут находиться в открытом космосе? Неужели их спасает супер термокостюм?

Работа космонавта в открытом космосе при +150°

Какая температура внутри МКС?

В отличие от температуры за бортом внутри МКС удается сохранить стабильную температуру, пригодную для жизни людей - приблизительно +23°. Причем как это делается, совершенно непонятно. Если за бортом, например, +150°, то как удается охладить температуру внутри станции или наоборот и постоянно держать её в норме?

Как влияет радиация на космонавтов в МКС?

На высоте 400 км радиационный фон в сотни раз превышает земной. Поэтому космонавты на МКС, когда они оказываются на солнечной стороне, получают облучение, уровень которого в несколько раз превышает дозу, например, полученную при рентгене грудной клетки. А в моменты мощных вспышек на Солнце работники станции могут схватить дозу, в 50 раз превышающую норму. Как им при этом удается работать в таких условиях длительное время, также остается загадкой.

Как влияет космическая пыль и мусор на МКС?

По данным NASA, на околоземной орбите около 500 тысяч больших обломков (частей отработанных ступеней или других деталей космических кораблей и ракет) и ещё неизвестно, сколько подобного мелкого мусора. Всё это «добро» вращается вокруг Земли со скоростью 28 тысяч км/ч и почему-то не притягивается к Земле.

Кроме того, существует и космическая пыль - это всевозможные метеоритные осколки или микрометеориты, которые постоянно притягиваются планетой. Причём, если даже пылинка весит всего 1 грамм, она превращается в бронебойный снаряд, способный продырявить станцию.

Говорят, что если к МКС приближаются такие объекты, то космонавты меняют курс станции. Но мелкий мусор или пыль невозможно отследить, поэтому получается, что МКС постоянно подвергается огромной опасности. Как с этим справляются космонавты, опять же непонятно. Получается, что каждый день они сильно рискуют своей жизнью.

Отверстие в шаттле Индевор STS-118 от попадания космического мусора похоже на пулевое отверстие

Почему МКС не падает?

В различных источниках пишут о том, что МКС не падает благодаря слабой гравитации Земли и космической скорости станции. То есть, вращаясь вокруг Земли со скорость 7,6 км/с (для информации - период обращения МКС вокруг Земли составляет всего 92 мин 37 секунд), МКС как бы постоянно промахивается и не падает. Кроме того, на МКС есть двигатели, которые позволяют постоянно корректировать положение 400-тонной махины.

Мы говорим о том, что на любой объект, находящийся в непосредственной близости от Земли, действует ее сила гравитации. А раз так, то он не может долго находится на ее орбите, и обязательно упадет на поверхность, если до этого не сгорит в верхних слоях атмосферы. Эта же участь, по идее, должна постигнуть МКС, которая находится на удалении 400 километров от поверхности планеты. Но даже столь солидное расстояние не может избавить космическую станцию от силы земной гравитации. Но тогда каким образом она столь продолжительное время удерживается на стационарной орбите?

Давай те сначала разберемся, что собой представляет международная космическая станция. Это сложная модульная конструкция, весом 400 тонн. Если говорить о ее размерах, то они примерно такие же, как поле для игры в американский футбол. Чтобы собрать такую конструкцию, понадобилось 13 лет. За это время была проведена огромная работа, которая включает в себя: многочисленные запуски космических грузовых кораблей «Прогресс», американских «Шатлов», выход космонавтов в открытый космос. В настоящий момент стоимость международной космической станции составляет более 150 миллиардов американских долларов. На станции постоянно находятся шесть космонавтов, которые являются представителями разных стран мира.

Но вернемся к нашему первоначальному вопросу, и попробуем разобраться, почему станция, под действием сил гравитации, не падает на поверхность Земли.

На самом деле она потихоньку падает. В течение года ее снижение достигает двух километров. И если бы не корректировка орбиты, то мы давно бы с ней распрощались. Именно своевременная корректировка позволяет МКС оставаться на стационарной орбите. Вы не поверите, но столь сложная и тяжелая конструкция обладает высочайшей мобильностью. Она может менять параметры орбиты, двигаться во всех направлениях, и даже переворачиваться при необходимости, для того, например, чтобы увернуться от различных космических объектов, в число которых входит и космический мусор.

Все перемещения осуществляются с помощью специальных двигателей, именуемых гиродинами. На станции их четыре. Чтобы сориентировать станцию или же скорректировать ее орбиту, с Земли поступает команда на их запуск, после чего станция начинает свое движение. За столь ответственную операцию отвечает специальный оператор. В его обязанность входит не только своевременная корректировка орбиты МКС, но и обеспечение ее безопасности, с целью недопущения столкновения с метеоритами и космическим мусором. Аналогичные ускорители и двигатели имеются на грузовых космических кораблях «Прогресс», которые пристыковываются к МКС. С их помощью также можно корректировать ее орбиту.

Также оператор следит за массой станции. Без этого невозможно точно рассчитать тягу геродинов, которая не должна быть меньше 1 м/секунду. Масса станции постоянно меняется. Как правило, это происходит в момент пристыковки к ней очередного грузового корабля «Прогресс», который доставляет на борт полезный груз. Космонавты в процессе планового перемещения станции никакого участия не принимают. Всем руководит оператор с Земли.

Как известно, геостационарные спутники висят неподвижно над землёй над одной и той же точкой. Почему они не падают? На той высоте не действует сила притяжения?

Ответ

Геостационарный искусственный спутник Земли представляет собой аппарат, который движется вокруг планеты в восточном направлении (в том же, в каком вращается сама Земля), по круговой экваториальной орбите с периодом обращения, равным периоду собственного вращения Земли.

Таким образом, если смотреть с Земли на геостационарный спутник, мы будем видеть его неподвижно висящим на одном и том же месте. Из-за этой неподвижности и большой высоты около 36 000 км, с которой видна почти половина поверхности Земли, на геостационарную орбиту выводят спутники-ретрансляторы для телевидения, радио и коммуникаций.

Из того, что геостационарный спутник висит постоянно над одной и той же точкой поверхности Земли, некоторые делают неверный вывод, что на геостационарный спутник не действует сила притяжения к Земле, что сила тяготения на определённом расстоянии от Земли исчезает, т. е. они опровергают самого Ньютона. Конечно это не так. Сам запуск спутников на геостационарную орбиту рассчитывается именно по закону всемирного тяготения Ньютона.

Геостационарные спутники, как и все остальные спутники, на самом деле падают на Землю, но не достигают её поверхности. На них действует сила притяжения к Земле (гравитационная сила), направленная к её центру, а в обратном направлении на спутник действует отталкивающая от Земли центробежная сила (сила инерции), которые уравновешивают друг друга - спутник не улетает от Земли и не падает на неё точно так же, как ведро, раскручиваемое на верёвке, остаётся на своей орбите.

Если бы спутник совсем не двигался, то он упал бы на Землю под действием притяжения к ней, но спутники движутся, в том числе и геостационарные (геостационарные - с угловой скоростью равной угловой скорости вращения Земли, т. е. один оборот за сутки, а у спутников нижележащих орбит угловая скорость больше, т. е. за сутки они успевают совершить вокруг Земли несколько оборотов). Линейная скорость, сообщаемая спутнику параллельно поверхности Земли при непосредственном выводе на орбиту сравнительно большая (на низкой околоземной орбите - 8 километров в секунду, на геостационарной орбите - 3 километра в секунду). Если бы не было Земли, то спутник с такой скоростью летел бы по прямой, но наличие Земли заставляет спутник падать на неё под действием силы притяжения, искривляя траекторию по направлению к Земле, но поверхность Земли не плоская, она искривлена. На сколько спутник приближается к поверхности Земли, на столько поверхность Земли уходит из-под спутника и, таким образом, спутник постоянно находится на одной и той же высоте, двигаясь по замкнутой траектории. Спутник всё время падает, но никак не может упасть.

Итак, все искусственные спутники Земли падают на Землю, но - по замкнутой траектории. Спутники находятся в состоянии невесомости, как все падающие тела (если лифт в небоскрёбе сорвётся и начнёт свободно падать, то люди внутри тоже будут находиться в состоянии невесомости). Космонавты внутри МКС находятся в невесомости не потому, что на орбите не действует сила притяжения к Земле (она там почти такая же как и на поверхности Земли), а потому, что МКС свободно падает на Землю - по замкнутой круговой траектории.



error: Контент защищен !!