Что такое iot устройства. IoT - Internet of Things Интернет вещей. Как это должно работать

Облачный сервис получает данные о скорости тысяч автомобилей и строит карту загруженности дорог города, помогая автомобилистам найти быстрый маршрут. Браслет на ноге юноши-футболиста отслеживает его активность во время тренировки и загружает данные в приложение, отбирающее наиболее успешных юниоров в национальную сборную по футболу. «Умные» счетчики передают показания онлайн, сообщают об утечках, помогают сэкономить на ресурсах и снизить оплату ЖКХ. А конвейеры с интеллектуальной начинкой предупреждают оператора о симптомах приближающегося износа агрегата, предотвращают остановку производства и снижают издержки на ремонт.

Все это - «Интернет вещей» или Internet of Things (IoT).

Как появился «Интернет вещей»

Концепция Интернета вещей была предугадана в начале XX века Николой Тесла - физик пророчил радиоволнам роль нейронов «большого мозга», управляющего всеми предметами. А инструменты его контроля должны будут легко умещаться в кармане. Великий изобретатель не был фантастом, просто он понимал то, что его современники не могли и представить.

Сто лет спустя термин «Интернет вещей» ввел в широкий оборот сотрудник исследовательского агентства при Массачусетском технологическом институте Кевин Эштон. Он предложил увеличить эффективность логистических процессов без вмешательства человека: с помощью радиодатчиков собирать информацию о наличии товаров на складах предприятия и отслеживать их движение к торговым точкам. Каждая метка отправляла в сеть данные о своем местонахождении в настоящий момент времени. Использование RFID-меток ускорило реакцию поставщиков и ритейлеров на изменение спроса и предложения: товары не лежали на складе, а отправлялись туда, где они действительно необходимы. Эффект от введения маркировки оценили, и с января 2007 года все поставщики крупнейшей американской розничной сети производят товары только с радиометками.

Концепция Интернета вещей базируется на принципе межмашинного общения: без вмешательства человека электронные устройства «общаются» между собой. Интернет вещей - это автоматизация, но более высокого уровня. В отличие от «умных» домов узлы системы используют TCP/IP-протоколы для обмена данными через каналы глобальной сети Интернет.

Такой метод коммуникации дает серьезное преимущество - возможность объединять системы между собой, строить «сеть сетей». Это позволяет изменить бизнес-модели отраслей и даже экономики целых стран.

Интернет вещей не только меняет существующие правила, но и формирует новые правила экономики совместного использования» (shared economy), исключая посредников из бизнес-модели.

Менее чем за 20 лет Интернет вещей стал трендом рынка информационных технологий. Аналитики прогнозируют колоссальное количество IoT устройств через несколько лет - свыше 50 миллиардов. Развитие производства электронных компонентов позволяет «штамповать» миллионы дешевых чипов для всевозможных устройств. От радиочипов, нанесенных на складские коробки, IoT трансформировался в глобальную «интернетизацию» окружающих нас предметов, воспринимаемый людьми как глобальная «оцифровка» реальности.

Интернет вещей «на пальцах»

Для широкой публики Интернет вещей - это холодильник, публикующий фото ваших продуктов в Instagram, или стиральная машина, которая постит в Facebook: «У меня была сегодня чумовая стирка». Из 28 миллиардов ожидаемых подключений менее половины придется на пользовательские гаджеты, которые составляют «customer IoT»: смартфоны и планшеты, носимые датчики для фитнеса и амбулаторной медицины.

Более 15 миллиардов устройств будут работать в бизнесе и промышленности: разнообразные датчики для оборудования, терминалы для продаж, сенсоры на производственных агрегатах и общественном транспорте.

Интернет вещей станет тем инструментом, с помощью которого можно дешево, быстро и масштабно решать конкретные бизнес-задачи в конкретных отраслях.

Промышленный IoT (Industrial IoT, IIoT) объединяет концепцию межмашинного общения, использование BigData и проверенные технологии автоматизации производства. Ключевая идея IIoT в превосходстве «умной» машины над человеком в точном, постоянном и безошибочном сборе информации. Интернет вещей повысит уровень контроля качества продукции, выстроит процесс бережливого и экологичного производства, обеспечит надежные поставки сырья и оптимизирует работу заводского конвейера.

Интернет людей - всемирная паутина, которая «высасывает» не только наши деньги, но и время. Мы проводим по несколько часов в неделю в соцсетях, онлайн-играх или на сайтах. Покупаем в интернет-магазинах вещи, которые нам зачастую не нужны, просто потому, что это легко и доступно - в два клика.

В отличие от традиционного «человеческого» интернета IoT применяется для рационального и практичного подхода. Его ключевая задача - автоматизация, оптимизация, сокращение материальных и временных затрат.

Применение IoT в промышленной индустрии и транспорте сокращает затраты за счет снижения аварийности, уменьшения потерь сырья и количества использованных ресурсов. В сфере энергетики - повышает эффективность выработки и распределения электроэнергии.

Интернет вещей экономит не только деньги, но и время: машины заменили человека на рутинной работе и освободили от выполнения рискованных или стандартных задач. Интеллектуальные системы следят за промышленным конвейером, считают товар на складах и регулируют движение вместо человека. В любую погоду, круглосуточно и без выходных.

Нас окружают разнообразные «подключенные» устройства: на улице работают системы безопасности и экомониторинга. Интернет вещей начинает использоваться в быту, в ЖКХ и индустриальной сфере, транспорте, сельском хозяйстве и медицине.

Пример 1. Яндекс.Навигатор - тоже IoT

Знакомый всем пример - Яндекс.Навигатор. Водители по всей России и СНГ пользуются этим сервисом. Смартфоны и планшеты передают координаты, направление движения и скорость в службу Яндекс, а принятая от пользователей информация анализируется на сервере компании. Получив сведения о заторе, приложение автоматически предлагает водителю варианты объезда и отображает маршрут на экране телефона или планшета. Мобильные устройства, центры обработки данных и приложение Яндекса обмениваются данными без вмешательства человека, являя собой отличный пример Интернета вещей.

Как результат - водители тратят меньше времени в пробках, выбирая оптимальные маршруты объезда.

Еще немного и искусственный интеллект Яндекса начнёт перераспределять нагрузку на дорогах городов. Учитывая накопленную статистику, он будет предлагать такие маршруты, которые оптимально загрузят магистрали и минимизируют пробки.

Пример 2. Спортивный IoT

В спорте Интернет вещей используют для накопления статистики и анализа данных. Применение IoT-решений разнообразно: от мобильных приложений для любителей утренних пробежек, следящих за расходом калорий, до производительных информационно-вычислительных систем в профессиональном спорте.

Командное IoT-решение отслеживает состояние отдельных спортсменов и всего коллектива. Информация о перемещении, пульсе считываются датчиками, встроенными в жилет, надетый игроком. Координаты и медицинская телеметрия отправляются на облачную платформу, снабжая оперативной информацией руководство и вспомогательные службы команды. Тренер строит тактику игры, не дожидаясь тайм-аута для оценки состояния коллектива и переигрывает соперников за счет быстрого реагирования на окружающую обстановку.

Ранее у тренерского состава и спортивных аналитиков не было иного выбора, кроме как просматривать после игры заметки и десятки часов видеозаписи для оценки поведения игрока на поле и его работоспособности. Теперь информация предоставляется онлайн и голевой момент матча всегда можно «вытащить» из хранилища и проанализировать. Интернет вещей обрел популярность не только среди тренеров, но и у медиков - бригады оказания первой помощи мгновенно реагируют на критические показания здоровья подопечных.

Пример 3. «Умные» счетчики

В жилищно-коммунальном хозяйстве IoT-технологии нашли применение в системах интеллектуальной диспетчеризации - «умных» приборов учета ресурсов . Подключенные к Интернету счетчики передают показания в «облако», а диспетчер видит расход воды, электричества или газа в отдельном доме, квартале или в целом городе. Это дает возможность, не заглядывая в квартиры собственников, в режиме реального времени, иметь полную картину потребления ресурсов, удаленно управлять приборами учета, оперативно выставлять счета жильцам. Без обходчиков, без обработчиков и без временных потерь.

Такой подход позволит изменить механизм учета ресурсов. Сегодня управляющие компании собирают показания с приборов учета, обрабатывают данные, выставляют счета и собирают оплату за ЖКУ. В случае внедрения «умных» счетчиков в масштабах города, структуры, обслуживающие жилые дома, превращаются в ненужных посредников и «выходят из игры». Что сегодня мы и наблюдаем в некоторых регионах России, где водоканалы переходят на прямые договоры с жильцами. Электросетевые компании, кстати, уже давно применяют такую схему расчетов, но по инерции нанимают обходчиков или требуют данные с жильцов.

Прямой диалог между счетчиками в домах и «ресурсниками» стал возможен благодаря IoT-решениям - беспроводной автоматизированной диспетчеризации. Это отличный пример того, как Интернет вещей меняет бизнес-модель в отрасли.

Аналогично - UBER, который за счет концепции Интернета вещей исключил таксомоторные компании из бизнес-модели частного извоза. Крупные структуры стали просто не нужны и сейчас клиент напрямую общается с водителем.

За счет точного учета, оповещениях о перерасходе ресурсов или авариях подключенные к Интернету приборы учета ЖКХ сохраняют до 30% ресурсов в каждом многоквартирном доме. А помимо удобства, дополнительное преимущество для конечного потребителя - сэкономленные на содержании ненужной «прослойки» деньги.

Диспетчеризация приборов учета воды и удаленного съема показаний - один из наиболее удачных примеров применения технологии Интернета вещей в сфере жилищно-коммунального хозяйства.

Организации, внедрившие IoT-решения для управления многоквартирными жилыми домами, получили эффективный инструмент контроля и учета ресурсов. Такая система автоматизирует трудоемкие операции по сбору и обработке показаний, которые ранее требовали участия половины штата сотрудников. Имея на руках прозрачные данные, управляющая компания выявляет потери и минимизирует расходы на общедомовые нужды (ОДН).

Пример 4. Сельское хозяйство

Более половины производителей томатов и треть хлопководов Израиля используют систему для мониторинга влажности, температуры грунта и других характеристик почвы . Датчик, «закрепленный» за отдельным растением или участком с посевами, отправляет информацию на облачный сервер, откуда данные поступают оператору, выводя на экран состояние саженца и рекомендации по улучшению его плодоносных свойств.

В США сформировали интересный симбиоз такой «пахучей» сферы агротехники как удобрение полей и IoT. Фермер оснастил трактора-распрыскиватели, обслуживающие угодья в радиусе 121 километра от станции, решением на базе беспроводных технологий. Водитель-оператор насосной установки удаленно отслеживает и распределяет подачу органических удобрений на поля, а владелец контролирует расход с экрана своего смартфона.

Пример 5. «Умные» заводы

Зарубежные владельцы заводов уже осознали преимущества IoT в сокращении расходов и увеличении прибыльности индустриального бизнеса. В электроэнергетике и легкой промышленности интерес к применению Интернета вещей есть. С помощью IoT-технологий операторы морских ветрогенераторов удаленно контролируют износ роторов и турбин, отслеживают их производительность. За счет своевременного обслуживания минимизируется риск остановки «ветряков» и отпадает необходимость в отправке бригад на удаленные морские платформы.

Швейцарская компания, выпускающая станки и двигатели, реализовала мечту производственных инженеров - проведение упреждающего техобслуживания (ТО).

Более 5000 единиц оборудования на производственных площадках подключили к IoT-платформе изготовителя, сигнализирующей о необходимости ТО для профилактики возможной поломки. Несколько лет назад компания командировала выездные бригады техников для диагностики на местах.

Сейчас эксплуатант станка или электродвигателя отслеживает состояние оборудования онлайн и вовремя узнает о возможных авариях. Такой «проактивный» мониторинг сократил расходы за счет снижения издержек и ликвидации простоев. Традиционно, ППР (планово-предупредительные ремонты) требовали остановки производственных линий и организовывались по графику, независимо от того, была в них необходимость или нет.

Внедрение IoT-технологии позволило проводить упреждающее техобслуживание тогда, когда оно действительно нужно, и ремонтировать машины до того, как они сломаются. Интернет вещей обеспечил не только непрерывность производства, но и сэкономил на планировании предупредительных работ - затраты на планирование составляют 30-40% от объема ремонтного фонда предприятия.

В ближайшее время бизнес станет первым и основным потребителем IoT-технологий. Топ-менеджеры корпораций рассматривают Интернет вещей в первую очередь как инструмент для снижения расходов и увеличения производительности. Предприниматели хотят использовать инновационную концепцию для вхождения в новые рынки и расширить свой ассортимент за счет использования подключенных устройств.

Промышленники понимают: новые технологии оптимизируют производственный процесс и уберут из него человеческий фактор, а вместе с ним и лишние риски.

Пример 6. «Носимый» IoT

Крупные ИТ-компании начали инвестировать в развитие медицинского Интернета вещей. Одно из таких решений отслеживает динамику болезни и выздоровления пациентов в режиме 24/7 посредством носимого на теле датчика. Мониторинг происходит в режиме реального времени, начиная от сбора показаний в стационаре и дома, завершая направлением данных лечащему врачу и в лаборатории для анализа и принятия решений.

В медицине есть проекты, развернутые в рамках лечебного учреждения и предупреждающие персонал об истощении запаса медикаментов или инструментов.

В обеспечении физической безопасности применение IoT-концепции скорее экзотично, чем привычно. В октябре 2016 года технологию Интернета вещей в прямом смысле «взяла на вооружение» оборонная промышленность - для охраны Крымской военно-морской базы Минобороны РФ закупило комплекс охраны «Часовой-1».

Комплекс, в состав которого входят вибробраслеты, гарантирует безопасность бойцов, охраняющих объекты и проверяющих автотранспорт на «блоках». Каждый браслет оснащен датчиком «неподвижности». Как только часовой прекращает движение более чем на 30 секунд, система посылает на его браслет вибросигнал. Если в течение 15 секунд после предупреждения боец не «оживет» - в караульном помещении объявляется тревога.

IoT - это новый этап развития сети Интернет, который проникает в ранее недоступные сферы, привнося качественные изменения, делая жизнь людей проще, а работу компаний - эффективней.

Интернет вещей будущего

IoT стал всемирным трендом, и скоро возможность «интернетизации» станет обязательным требованием для продуктов и услуг широкого потребления. Устройства будут выходить с конвейера с уже встроенными интеллектуальными и коммуникационными возможностями.

За счет увеличения масштаба производства и удешевления компонентной базы стоимость умных устройств снизится до минимума. IoT проникнет в автомобили, грунт, море и реки, в тело человека. Датчики станут настолько миниатюрными, что будут помещаться в мелких бытовых предметах или продуктах питания.

Соответственно устройствам уменьшатся в размерах и аккумуляторы, а затем они и вовсе исчезнут - «умные» датчики научатся получать энергию из окружающей среды: от вибрации, света или воздушных потоков и станут полностью автономными.

Интернет вещей станет гетерогенной средой, которая будет существовать как отдельный живой организм. Наступит время машин.

Сложности с компонентной базой ушли в прошлое, появился новый вызов: необходимо объединить миллиарды «умных» приборов в единую сеть.

Интеллектуальный станок, датчик температуры масла на промышленном агрегате, смарт холодильник - всем этим устройствам необходима среда для общения. В противном случае они так и останутся «немыми»: обычным счетчиком или датчиком, отличающимся от своих собратьев только «космическим» дизайном.

Если оставить прогнозы о «количестве устройств Интернета вещей к 2020 году» ясно, что IoT-индустрия растет. Инженерам уже не интересно, сколько, 50 миллиардов датчиков и смартфонов будет в сети или 100 миллиардов. Порядок уже ясен, как и цель - подключение «армии» устройств к Интернету.

Для передачи данных разрабатывалось множество протоколов, но каждый из них был «заточен» под определенную задачу: GSM для голосового общения, GPRS для обмена данными с мобильных телефонов, ZigBee - создания локальной сети и управления «умными» домами, а Wi-Fi для беспроводных локальных сетей с высокой скоростью передачи данных.

Эти технологии могут быть применены для решения нецелевых задач и по-разному с ними справляться.

К примеру, Яндекс.Навигатор сможет работать через GPRS/3G/4G и никакая другая связь для такого приложения не подойдет. Мы, конечно, можем подключить смартфон к Wi-Fi и запустить Навигатор, но как только автомобиль отъедет на 100 метров от точки доступа - приложение «закончится». А в «умном» доме не «приживутся» автономные GPRS-датчики - через два дня в них сядут батарейки. Поэтому в интеллектуальном жилище лучше всего подойдет энергоэффективный ZigBee.

Набирая обороты, Интернет вещей выдвигает свои требования:

  1. Небольшой объем данных: датчикам и сенсорам не нужно передавать мега- и гигабайты, как правило это биты и байты.
  2. Энергоэффективность: подавляющая часть датчиков автономны и должны будут работать годами.
  3. Масштабируемость: в сети должны уживаться миллионы различных устройств, и добавление одного-двух миллионов не должно вызывать сложностей.
  4. Глобальность: нужен широкий территориальный охват и как следствие передача информации на большие расстояния.
  5. Проникающая способность: устройства в подвалах, шахтах должны передавать сигнал наружу.
  6. Стоимость устройств: устройства должны быть дешевы и доступны для пользователя, а готовые решения рентабельны для бизнеса.
  7. Простота: принцип «поставил и забыл»: пользователь выберет понятные и дружелюбные устройства.

Казалось бы, сотовые сети - очевидные кандидаты на построение развернутой на десятки километров беспроводной IoT-среды. Однако ни стандарт GSM, ни инфраструктура мобильных операторов изначально не создавались для М2М-диалога. Протоколы сотовой связи предназначены для общения людей: большой объем трафика и высокая скорость обмена данными в густонаселенных районах.

Разработчики изначально не предполагали возможность обмена небольшими объемами данных между разнесенными «умными» сенсорами. Датчику с WiFi необходимо постоянное питание, а элемент умного GSM устройства продержится 2-3 недели. Мы не готовы ежемесячно менять батарейки в десятках устройствах или монтировать к ним проводную систему питания.

Подключение всевозможных устройств к мобильным сетям еще можно представить в населенных пунктах, но за пределами оживленных трасс и урбанизированных территорий протоколы GSM, 3G, LTE не позволяют создавать масштабные IoT проекты - слишком дорого разворачивать и обслуживать инфраструктуру сотовой сети.

В городе сотовая связь ограничена низкой проникающей способностью сигнала. А «умные» датчики или счетчики зачастую будут находиться за несколькими стенами, в техколодцах или на цокольных этажах, где уже не берет GSM.

Фундаментом масштабных проектов станет энергоэффективная сеть, которая удовлетворит запросы промышленников, сельхозпроизводителей, государственные компании в масштабности и невысокой стоимости эксплуатации. Интернету вещей нужен стандарт связи с возможностью широкого территориального охвата, высокой энергоэффективностью, дешевой инфраструктурой и не требующей высоких эксплуатационных расходов.

LPWAN - будущее IoT концепции

С учетом перечисленных требований и ограничений, решением проблемы стало использование технологии на стыке высокой дальности и низкого энергопотребления. Она получила название Low-Power Wide-Area Network (сокращенно – LPWAN) или энергоэффективная сеть дальнего радиуса действия.

LPWAN разрабатывался специально для межмашинного общения, и стал двигателем дальнобойного Интернета вещей.

Отсутствие высоких требований к объему передаваемой информации позволило сконцентрироваться на других, более важных параметрах технологии и обеспечить 50 километровую дистанцию взаимодействия между разнесенными устройствами, высокую энергоэффективность, проникающую способность и масштабируемость.

Дальнобойная и энергоэффективная, LPWAN отлично подходит для IoT, как в бытовом, так и в промышленном секторе, где имеется потребность в автономной передаче телеметрии на дальние расстояния.

LPWAN гораздо лучше соответствует запросам М2М-сетей, чем та же сотовая связь - тысячи квадратных километров могут быть покрыты одной базовой станцией. Построение такой сети проще, а обслуживание - дешевле. Подобный подход становится единственной альтернативой в случае, когда датчики разнесены по большой территории. Как, например, счетчики воды в пределах одного квартала или датчики влажности почвы, размещенные сразу на нескольких полях.

Резюме

Уже сейчас IoT меняет правила игры в отдельных отраслях: проникает в недоступные и невозможные ранее сферы, улучшая качество жизни и увеличивая эффективность бизнеса. Технологии Интернета вещей нашли применение там, где они выгодны бизнесу и удобны людям.

LPWAN - двигатель «дальнобойного» беспроводного IoT

Преимущества LPWAN-технологии хорошо вписываются в потребности масштабного внедрения IoT в промышленности, транспорте, сфере безопасности и десятках других отраслей. Большой радиус действия, высокая автономность конечных устройств, простота развертывания LPWA-сети и низкая стоимость инфраструктуры даст толчок крупномасштабным проектам и развитию Интернета вещей.

Внедрение платформ IoT заставит изменить подходы к созданию и использованию АСУ и управлению предприятиями в целом.

IoT или системы телеметрии?

В России и мире наиболее распространено определение интернета вещей (Internet of Things, IoT) с точки зрения технологий: он рассматривается как система объединенных компьютерных сетей и подключенных физических объектов (вещей) со встроенными датчиками и программным обеспечением для сбора и обмена данными, с возможностью удаленного контроля и управления в автоматизированном режиме, без участия человека. Если подключение датчиков телеметрии осуществляется с использованием сетей сотовой связи, то такие системы еще называют системами межмашинных коммуникаций (M2M).

Однако такое определение не позволяет разделить существующие уже многие десятилетия распределенные системы телеметрии/телеуправления и возникающие в настоящее время экосистемы интернета вещей (см. таблицу), а главное - показать, какими изменениями в экономике и бизнесе эти технологические сдвиги вызваны.

Поэтому имеет смысл сформулировать определение интернета вещей с точки зрения бизнеса как технологической основы для перехода к экономике совместного использования (shared eco-nomy) средств про-изводства и предметов конечного потребления. Такая организация производства и потребления товаров и услуг возникает в ходе так называемой четвертой индустриальной революции, которая состоит в появлении возможности формировать полностью автоматические (цифровые) цепочки создания добавленной стоимости, выходящие за границы одного предприятия, с перспективой объединения в глобальную промышленную сеть вещей и услуг.

Экономика совместного использования базируется на принципе объединения различных устройств (станков и промышленного оборудования, транспортных средств, инженерных систем) в программно управляемые пулы и предоставления пользователю не самих устройств, а результатов их работы, по сути их функций. IoT тесно связан с концепцией программно определяемых вещей (soft-ware-defined things, smart things), которая постулирует, что функционал умного устройства (вещи), в отличие от обычной вещи с элементами компьютерного управления, в большей степени определяется программно, причем независимо от его аппаратной реализации. Устройство (объект IoT) одновременно существует в двух взаимосвязанных ипостасях: как физический объект и как его точная и актуальная математическая (программная) модель, т.е. как киберфизическая система.

Объединение устройств в виртуальные пулы и предоставление пользователю их функций позволяет многократно повысить эффективность таких устройств по сравнению с традиционной моделью информационно изолированного использования. Это дает возможность реализовать принципиально новые бизнес-модели, например, контракт жизненного цикла на промышленное оборудование, контрактное производство как сервис, транспорт как сервис, безопасность как сервис и др.

Для воплощения подобного подхода в жизнь нужно, чтобы информация о фактическом состоянии каждого из объединяемых в пул устройств была доступна автоматизированной системе управления, а процессы получения данных о состоянии объекта и исполнении команд управления протекали с допустимым для системы управления уровнем неопределенности.

Облако управления - платформа IoT

Технологической основой для таких изменений служат платформы IoT. Они являются ключевым звеном всей экосистемы интернета вещей, играя роль посредника: устройства и компоненты решения могут передавать данные в широком диапазоне форматов, используя различные протоколы связи (рис. 1). А механизм абстракции дает возможность использовать полученные данные в другом месте цепочки создания ценности (аналитика, бизнес-логика, интеграция с корпоративными системами, разработка приложений).

Платформа IoT представляет собой совокупность взаимодействующих между собой облачных сервисов (облако управления), которая обеспечивает непосредственное, без участия человека и промежуточных АСУ управление подключаемыми объектами. Это облако управления обладает всем необходимым функционалом (программными алгоритмами обработки данных и управления) как низовых систем управления, так и систем управления уровня предприятия. То есть IoT-платформа одновременно выполняет функции универсального средства интеграции и реализует сколь угодно сложные и разнообразные алгоритмы управления.

Механизм открытых прикладных интерфейсов программирования (API) позволяет подключать к облаку управления любые устройства и любые АСУ, не внося в них изменений, а также обрабатывать поставляемые в облако управления данные с использованием готовых шаблонов, а при их отсутствии - с использованием встроенных средств разработки программных приложений. Накопление в платформах IoT исторических данных, поступающих от широкой номенклатуры устройств и АСУ, и применение технологий машинного обучения дают возможность автоматизировать процессы совершенствования алгоритмов, исполняемых облаком управления, что в принципе невозможно в информационно изолированных АСУ.

Таким образом, переход к IoT не требует внесения серь-езных изменений в подключаемые устройства и, как следствие, значительных капитальных затрат на их модернизацию или полную замену. Однако необ-ходимо будет кардинально изменить подходы к использованию подключаемых устройств, трансформировать методы и средства сбора, хранения и обработки данных о состоянии устройств и роль человека в процессах сбора данных и управлении устройствами. Внедрение платформ IoT заставит изменить подходы к созданию и использованию АСУ и общие взгляды на управление предприятиями и организациями.

Согласно классификации аналитиков Berg Insight и First Analysis, большую часть IoT-платформ можно отнести к одной или сразу к нескольким категориям:

  • платформы управления коммуникациями (Connectivity Management Platforms, CMP);
  • платформы управления сетями/данными/абонентами (Network/Data/Subscriber Management, NM/DM/SM);
  • платформы управления устройствами (Device Management Platforms, DMP);
  • платформы для обеспечения работы приложений (Application Enablement Platforms, AEP);
  • платформы для разработки приложений (App-lica-tion Development Platforms, ADP).

Ключевыми международными производителями IoT-платформ являются компании PTC, SAP, Microsoft и Telit.

Есть ли IoT-платформы в России?

Возможно, такое утверждение звучит излишне резко, но автор считает, что в России нет интернета вещей и, соответственно, облачных IoT-платформ. А что есть? Есть распределенные системы телеметрии с крайне ограниченной функциональностью проприетарного ПО и неприемлемо высоким соотношением «стоимость/экономические результаты применения». Как следствие, масштаб использования даже этих примитивных систем телеметрии, измеряемый количеством подключенных к ним устройств, в России крайне невелик - около 20,5 млн штук (рис. 2), что во много раз меньше, чем количество имеющих выход в интернет пользовательских устройств, а должно быть наоборот.

Общие черты всех российских рынков распределенных систем телеметрии:

  • Проприетарность и изолированность создаваемых аппаратно-зависимых решений в сочетании с малой тиражностью, что отражается на их качестве и стоимости.
  • Крайне ограниченный функционал - только мониторинг, причем с минимальным уровнем автоматизации обработки телеметрических данных.
  • Большое количество мелких игроков, не способных развивать свои продукты/решения.
  • С недавних пор - неготовность заказчиков оплачивать неэффективность этих решений.

На развитие отраслевых рынков (сфер применения) распределенных систем телеметрии влияют разные факторы, но всюду прослеживается одна общая тенденция. Это тенденция перехода от проприетарных изолированных систем мониторинга, осуществляемого со значительным участием персонала (фактически традиционных диспетчерских систем), к открытым экосистемам сервисов, ориентированных на телеметрию с аналитикой реального времени и телеуправление с взаимной оптимизацией работы различных систем и ресурсов.

Развитие отраслевых рынков систем телеметрии в России в этом направлении, очевидно, приведет к формированию открытых экосистем разработчиков. В такие экосистемы будут входить как разработчики сенсоров и исполнительных устройств IoT/M2M, способных взаимодействовать с различными системами/приложениями, так и разработчики приложений, которые создаются в формате облачных сервисов и способны через механизм открытых API взаимодействовать с сенсорами и исполнительными устройствами вне зависимости от того, кто является их владельцем.

Зачем переходить в интернет вещей?

Создание и развитие интернета вещей в России - объективная необходимость, поскольку только с его помощью можно решить чрезвычайно остро стоящую задачу одновременного повышения качества и снижения издержек по всей цепочке формирования добавленной стоимости. Традиционные АСУТП и распределенные системы телеметрии, как уже отмечалось, дают крайне ограниченный экономический эффект.

Что мешает? Мешает главным образом то, что переход к IoT - это трансформация принципов управления предприятием, к которой никто в России не готов. Не готовы даже ИТ-отделы, сторона, казалось бы, больше всех заинтересованная в увеличении значимости ИТ внутри организаций, которое обеспечит внедрение IoT.

Для обоснования этой моральной неготовности приводится множество аргументов против. У них есть одна общая черта - они не имеют ничего общего с реальностью.

Вот несколько типичных таких возражений, по сути - предубеждений против облаков:

1. Передача технологических данных в облако? Чтобы наше промышленное оборудование сломали хакеры? У нас и так все замечательно, а вы тянете нас в какую-то авантюру!

В России более 250 тыс. не подключенных к IoT-платформам контроллеров АСУТП «видны» через публичный интернет и никак не защищены - это яркая иллюстрация того, насколько сейчас «все замечательно» с точки зрения безопасности. На самом деле в IoT-платформах есть мощные механизмы защиты подключенных устройств и передаваемых данных. То есть подключение устройств телеметрии и телеуправления к IoT-платформе - это, пожалуй, единственный из существующих сегодня экономически обоснованных способов обеспечить информационную безопасность таких устройств в противовес попыткам возложить функции инфобезопасности на сами устройства.

2. Все решения всегда будет принимать человек, никакой искусственный интеллект его не заменит. Незачем в облаке анализировать данные технологических систем, они «живут» десятые доли секунды. Пускай первичный ввод данных в АСУП ведется вручную. Не надо брать их из АСУТП, это низкоуровневые системы и они совсем для другого. Производственные процессы осуществляются по жестким алгоритмам, и не надо лезть туда с оптимизацией и Big Data!

Более 70% чрезвычайных происшествий техно-генного характера (в частности, катастрофа на Чер-нобыльской АЭС) происходят из-за неправильных управленческих решений, принимаемых в условиях жесткого дефицита информации и времени. При-менение платформ IoT позволяет перейти на «плоские» системы предиктивного управления с единым гибким высокоавтоматизированным контуром «мониторинг - оптимизационное планирование - управление», минимизирующим негативное влияние человеческого фактора.

3. Хорошо, будем анализировать технологические данные с помощью Big Data и искусственного интеллекта. Но данные свои мы никому не отдадим и для их анализа развернем собственную платформу (частное облако).

На деле результаты машинного обучения тем лучше, чем больше объем анализируемых данных, поэтому любая информационно изолированная система, сколько бы не было в нее вложено денег, всегда будет хуже, чем открытая. Кроме того, специалисты по искусственному интеллекту и Big Data сегодня в жесточайшем дефиците, причем не только в России, но и в мире. А платформы IoT предлагают не только развитый инструментарий для создания аналитических приложений, но и готовые специализированные приложения для решения типовых задач.

4. Зачем нам сквозные автоматические процессы обмена данными между нами, нашими поставщиками и нашими потребителями? Мы отлично справляемся, общаясь с поставщиками и потребителями по телефону и электронной почте. Почему мы должны данные с наших производственных систем передавать другим компаниям, да еще в автоматическом режиме?

Оптимизация процессов внешнего взаимодействия дает огромный рост производительности и снижения издержек. Широко известный пример: переход на сквозные автоматические процессы позволил Harley Davidson сократить производственный цикл с 21 дня до 6 часов и сегодня каждые 89 секунд с конвейера сходит мотоцикл, полностью настроенный под своего будущего владельца.

Рынок всех рассудит

В России продолжается беспрецедентное по длительности снижение реальных доходов населения, начавшееся еще в ноябре 2014 г. По данным экспертов Центра экономических и политических реформ, российским семьям приходится тратить бульшую часть своего дохода - в среднем 70-80% - на самое необходимое. Таким образом, любимое отечественное бизнес-развлечение - перекладывание производителем своих постоянно растущих из-за инфляции и общей низкой эффективности бизнеса издержек на потребителя становится крайне затруднительным, во всяком случае в конкурентных отраслях экономики, ввиду отсутствия денег у конечных потребителей. Эти трудности распространяются на взаимоотношения поставщиков и потребителей в B2B-цепочках.

Значит, необходимо оптимизировать издержки по всей B2B2C-цепочке создания добавленной стоимости. Именно эту задачу и решает интернет вещей, реализуя сквозные автоматизированные бизнес-процессы, причем без значительных капитальных затрат.

IoT платформа – программное обеспечение, предназначенное для подключения интернет вещей (датчиков, контроллеров и других устройств) к облаку и удаленного доступа к ним.

Представляет собой промежуточный уровень между аппаратным уровнем (уровнем сенсоров) и прикладным.

2. История создания и развития

С момента появления термина «Интернет вещей» сети, состоящие из большого количества устройств, общающихся между собой, стремительно развиваются. Вследствие этого, IoT (Internet of Things) становится одной из основных технологий в современном обществе. С точки зрения технологических и технических аспектов развития IoT в настоящее время существует четкое разделение между аппаратными и программными платформами для подключения устройств, причем большинство поставщиков предлагают именно программные IoT платформы.

Платформы IoT обеспечивают бесшовную интеграцию различных аппаратных средств, используя протоколы связи, применяя различные типы топологии (прямое подключение или шлюз) и используя SDK при необходимости и т.д.

Используя интерфейсы интеграции с северной границей, предоставляемые платформой, вы также можете передавать собранные данные IoT в определенные системы анализа и хранения данных, а также передавать данные на подключенные устройства (конфигурация, уведомления) или между ними (элементы управления, события), используя различные виды пользовательских приложений.

Самыми популярными программными IoT платформами являются: Microsoft Azure IoT, Amazon Web Services (AWS) IoT, Google Cloud, ThingWorx IoT, IBM Watson, Artik от Samsung Electronics, Cisco IoT Cloud Connect, Salesforce IoT Cloud и многие другие.

3. Технические характеристики

Критериями отличия программных IoT платформ друг от друга являются:

    масштабируемость – количество конечных устройств, которые могут подключаться к платформе, включая эффективную балансировку нагрузки серверов;

    простота использования – гибкость API интеграции и простота управления исходным кодом;

    варианты развертывания – публичное или частное облако;

    безопасность – защита данных путем шифрования, контроля доступа пользователей и т.д.

    база данных – вариант хранения данных, получаемых с устройств, наличие гибридных облачных баз данных и т.д.

Среди протоколов, используемых платформами IoT, наиболее популярными являются MQTT, CoAP, HTTP/HTTPS, AMQP, XMPP, DDS.

Большинство современных программных плат IoT поддерживают аналитику в реальном времени - агрегирование потоков, фильтрация и др. (например, Storm, Samza), пакетную – операции с накопленным набором данных (например, Hadoop, Spark) и интерактивную аналитику данных - многократный исследовательский анализ как потоковых, так и пакетных данных (Spark MLLIB и т. д). Также существует прогностический метод аналитики, основанный на различных способах статистического и машинного обучения.

4. Кейсы применения

IoT платформы используются поставщиками и производителями умных устройств для оснащения своих продуктов функциями дистанционного управления, мониторинга в режиме реального времени, настраивания предупреждений и уведомлений, интеграции со смартфонами и другими устройствами.

Также широкой областью применения IoT платформ является оптимизация работы компаний в промышленном секторе (так называемый IIoT) посредством интеллектуального обслуживания оборудования, сбора данных с датчиков и их анализа в реальном времени. Кроме того IoT платформы используются при создании систем умного города для предоставления различных услуг частным и государственным компаниям, конечным клиентам.

Среди таких услуг можно отметить обеспечение безопасности на улицах города и в зданиях, мониторинг экологической ситуации, интеллектуальный мониторинг сетей и др.

Насколько корректен термин Internet of Things (IoT) и что сопутствовало его возникновению? Ответы на эти вопросы дает материал, который для TAdviser подготовил журналист Леонид Черняк.

IoT не интернет, а всего лишь PaaS?

В семидесятые годы прошлого века, с того времени, когда компьютеры престали быть единичными и уникальными изделиями, началась массовая автоматизация по двум практически независимым направлениям. Одно – автоматизация бизнес-процессов , которую мы его называем информационными технологиями (ИТ - IT, Information Technology). Другое - автоматизация технологических процессов, это направление в противовес ИТ стали называть операционными технологиями (OT, Operational Technology).

Стоит уточнить, ИТ имеют дело не с информацией, а с данными, поэтому их бы так точнее стоило бы называть «технологии данных». ИТ объединяют в себе компьютеры, системы хранения данных и сети с процессами создания, обработки, хранения, обеспечения безопасности и обмена любыми формами электронных данных. ОT- это тоже комплекс аппаратного и программного обеспечения, но предназначенного для контроля и управления физическими процессами.

В СССР стали популярны термины АСУ (Автоматизированные Системы Управления) и АСУ ТП (Автоматизированные Системы Управления Технологическими Процессами).

Более сорока лет ИТ и ОT развивались независимо, и за это время приобрели черты, существенно различающие их. Но во втором десятилетии XXI века под влиянием ряда факторов, в том сенсорной революции, развития сетевых технологий, облачного компьютинга, аналитики и других современных трендов начался процесс конвергенции (IT/OT convergence), объединяющий два подхода – ориентацию на данные и ориентацию на события в физическом мире.

В отдаленной перспективе стоит ожидать появления единого целого, состоящего из традиционных технологий для работы с данными и из промышленным систем управления (ICS) и систем диспетчерского управления и сбора данных (SCADA). Возможно, в конечном итоге это будут киберфизические системы или даже социальные киберфизические системы.

Киберфизические системы (Cyber-Physical-System) - это системы, состоящие из различных природных объектов, искусственных подсистем и управляющих контроллеров, позволяющих представить такое образование как единое целое. В CPS обеспечивается тесная связь и координация между вычислительными и физическими ресурсами. Область действия CPS распространяется на робототехнику, транспорт, энергетику, управление промышленными процессами и крупными инфраструктурами. Социальные киберфизические системы Cyber-Physical-Social Systems (CPSS) объединяют физический, кибернетический и социальный миры, обеспечивают взаимодействие между ними в реальном времени.

Процесс объединения ИТ и OT чрезвычайно сложен, он обсуждается на разных уровнях, в первую очередь в диалоге между двумя крупнейшими комитетами по стандартизации International Society for Automation (ISA) и Industrial Internet Consortium (IIC).

На маркетинговом уровне, в масс-медиа для обозначения решений, нацеленных на IT/OT convergence, чаще всего используют термин Industrial Internet или Industrial Internet of Things (IIoT). То, как это делается, чаще всего отражает избыточно восторженное отношение к феномену IoT и упрощенное отношение к переносу принципов IoT в индустрию. В Wikipedia статье Internet of Things есть специальный раздел «Критика и противоречия» , где показаны проблемы, связанные с IoT.

В IIoT проблем будет еще больше, потому что объемы данных, генерериуемые промышленными машинами, больше, чем бытовыми, а вопросы безопасности - критичнее. Обеспечить адресацию ко всем возможным устройствам по протоколу IPv6 (Internet Protocol version 6) далеко не достаточно для решения проблем IT/OT convergence. Поэтому, если судить по гамбургскому счету, никого интернета вещей нет, а за разрекламированной ширмой под названием IIoT скрывается сервисная платформа PaaS с доступом к облачным ресурсам по интернету.

Что такое IoT?

При первом, не слишком глубоком знакомстве с IoT общая идея интернета вещей и ее перспективы показались очень привлекательными. Но по прошествии нескольких лет, при более внимательном анализе этой темы возникли определенные сомнения, не в последнюю очередь вызванные чудовищным маркетинговым хайпом, сопутствующим IoT.

IoT вызывает ряд вопросов:

  • Насколько корректно словосочетание «Интернет вещей»?
  • Как Internet of Things (IoT) связан с сетью интернет?
  • Каким образом интернет может быть образован из вещей?

Возникновение этих и подобных вопросов закономерно хотя бы потому, что известные определения IoT, предлагаемые не кем-нибудь, а ведущими отраслевыми аналитиками, мягко говоря, ясности не прибавляют.

  • IDC - Internet of Things – это сеть сетей с уникально идентифицируемыми конечными точками, которые общаются между собой в двух направлениях по протоколам IP и обычно без человеческого вмешательства»
  • Gartner - Internet of Things - это сеть физических объектов, которые имеют встроенные технологии, позволяющие осуществлять взаимодействие с внешней средой, передавать сведения о своем состоянии и принимать данные из вне».
  • McKinsey – Internet of Things – это датчики и приводы (исполнительные устройства), встроенные в физические объекты и связанные через проводные или беспроводные сети с использованием протокола Internet Protocol (IP), который связывает Интернет».

Такого рода определения вызывают когнитивный диссонанс, то есть, состояние, о котором в энциклопедиях пишут «психический дискомфорт, вызванный столкновением в сознании индивида конфликтующих представлений: идей, верований, ценностей или эмоциональных реакций».

Начнем с того, что интернет или просто сеть - это всемирная система объединенных компьютерных сетей, служащая для хранения и передачи данных. Она построена на базе стека протоколов TCP/IP . Функция сети сводится к передаче пакетов данных, не более того. Этот факт знают далеко не все, для подавляющей части населения сеть известна тем, что на ней работает всемирная паутина WWW, в обыденном сознании WWW и интернет тождественны. Но есть еще и масса других систем передачи данных, в том числе обмен файлами, телефония, многое другое. В том числе, интернет вполне разумно использовать для организации обмена данными между вещами. Со стороны сети никаких ограничений нет. Почему же мы говорим о сети вещей, как о чем-то отдельном и особенном? Никому в голову не придет назвать WWW «Интернетом текстов».

Скорее всего, мы стали жертвой недоразумения, потому, что, говоря о IoT, обычно подразумевают не просто коммуникации, в что-то аналогичное WWW, нечто вроде паутины вещей, это обстоятельство было осознано относительно недавно и появился соответствующий термин Web of Things (WoT), который точнее подходит к идеальному представлению об IoT.

Подмена понятий возникла и укрепилось из-за отсутствия должного понимания различий между интернетом и WWW. Всемирная паутина - это распределенная система, предоставляющая доступ к связанным между собой документам, расположенным на различных компьютерах, подключенных к интернету. Возможность доступа к документам обеспечивается языком разметки HTML (HyperText Markup Language). Стандартным образом размеченные HTML-файлы (веб-страницей) являются основным типом ресурсов всемирной паутины.

Сами по себе текстовые документы не сложны, поэтому стандарты, разработанные консорциумом W3C, получились ясными и понятными, а трех вещей - уникальной системы адресации документов URL/URI, языка HTML и протокола HTTP - оказалось достаточно для того, чтобы обеспечить человечеству возможность коммуникации.

Скорее всего, в терминологической путнице напрямую «виноват» Кевин Эштон, предложивший термин Internet of Things, хотя в 1999 году он думал не о сети вещей, а о паутине вещей. Вот, что он написал позже в 2009 году:


Совершенно очевидно, он признает, что речь не идет о сетях передачи данных, а о некоторой информационной паутине, состоящей из образов вещей.

Если бы Эштон использовал большее точный термин Web of Things (WoT), то нам не пришлось мучительно истолковывать IoT. Когда говорят об авторстве на термин IoT, забывают, что еще в середине 90-х была компания Integrated Systems Inc. (ISI), предложившая бизкую по смыслу идею встроенного интернета (Embedded internet) . Тогда по наивности казалось, что для связи между вещами достаточно установить на встроенный процессор разработанную ISI операционную систему PSOS. Жизнь показала, что проблема существенно сложнее.

Сейчас академическое сообщество активнейшим образом занято разработкой WoT. В консорциуме W3C создана рабочая группа Web of Things Interest Group, ведутся работы, нацеленные на разработку стандартов, но это дело чрезвычайно долгое, поскольку устройства (вещи) не сравнимы по сложности и разнообразию с текстами. Соответственно стандартизация взаимодействия между устройствами на порядки сложнее того, что было сделано для текстов. Эти работы займут не один год.

А до тех пор придется смириться и со скорбью приять существующую трактовку IoT, согласившись с тем, что «термин занят», но понимая при этом, что никакого интернета вещей нет и быть не может, хотя когда-то может быть и будет создан веб-вещей. Поучается как с названием газеты МК, образованного от «Московского комсомольца», но с точностью до наоборот. Комсомола уже давно нет в природе и, скорее всего, больше никогда не будет. А IoT аббревиатура - от Internet of Things: от того, чего по существу еще нет в полном объеме, но когда-нибудь, вероятно будет что-то подобное.

Как устроен интернет вещей

IoT-платформы

Интернет вещей как «сеть сетей»

Промышленный IoT-сегмент

В статье перечислены основные бизнес-модели, по которым будут внедряться IoT в ближайшее время. Первая бизнес-модель – «нормативный контроль». Соблюдение требований контролирующих организаций является необходимым условием для ведения бизнеса, но прямой экономической выгоды они компаниям не приносят, несмотря на значительные затраты. В контексте данной ситуации IoT обладает огромным потенциалом по сокращению издержек в этой области.

Вторая бизнес-модель – «превентивный контроль»: IoT позволяют своевременно выявлять предпосылки для аварийных ситуаций и снижения эффективности работы оборудования. Благодаря IoT можно запустить дистанционный мониторинг и следить за работой оборудования онлайн в реальном времени.

Третья бизнес-модель – «дистанционная диагностика». Датчики IoT могут использоваться для диагностики устройств, на которых они установлены, и автоматически реагировать на изменения их состояния.

Четвертая бизнес-модель – «контроль операций». С помощью IoT можно контролировать цепочку технологических операций, осуществлять контроль перемещения любых устройств и автоматически отслеживать их характеристики в реальном времени. Это позволяет избавиться от воровства и неконтролируемых потерь, повысить эффективность работы подконтрольных объектов, где установлены «умные» датчики, добиться предсказуемости их эксплуатации.

Пятая бизнес-модель – «автоматизация операций». Приход IoT позволяет автоматизировать часто повторяющиеся операции, повышая эффективность работы, качество досуга, степень удовлетворенности клиентов. Достоинство таких IoT-гаджетов выражается не только в упрощении рутинных операций. Они стимулируют продажи, позволяя автоматизировать привычки.

Технологии IoT

Техническая и коммерческая платформа для IoT

Успешная реализация решений на базе всеобъемлющего интернета – не изолированный и независимый процесс. В Cisco считают, что для этого требуется техническая и коммерческая платформа, на которой можно будет легко выстраивать различные решения для рационального и эффективного достижения обещанных коммерческих преимуществ. В основе такой платформы интернета лежат надежная связь и технологическая инфраструктура, операционные и управленческие сервисы, а также ряд вертикальных и горизонтальных решений.

Опыт Cisco показывает, что для реализации решений на базе Всеобъемлющего Интернета все технические и коммерческие элементы должны обеспечивать нужный результат. Эффективное развертывание систем Всеобъемлющего Интернета обеспечит такую платформу для всего бизнеса или даже для всех отраслей, которая позволит реализовывать целый ряд уникальных прибыльных решений на базе IoE.

Уровни, начиная с нижнего:

  1. cетевые подключения – соединение всех решений, данных и приложений посредством оптоволоконной транзитной или лицензированной сотовой сети.
  2. Сетевой доступ – управляемая сеть Wi-Fi или иная нелицензированная беспроводная сеть для подключения всех датчиков и приложений.
  3. Технологическая платформа – платформа, обеспечивающая быстрое и надежное подключение новых устройств к архитектуре по принципу «подключи и работай», а также соединение с облачными сервисами хранения и обработки данных.
  4. Вертикальные и горизонтальные решения – совокупность устройств и приложений, обеспечивающая уникальные решения для различных вертикальных и горизонтальных отраслевых сегментов.
  5. Платформа монетизации – в некоторых вертикалях, таких как «умные» города и сегмент B2C, существуют возможности эффективного использования платформы для создания новых источников прибыли.
  6. Общая платформа управления – общая платформа, обеспечивающая управление, обслуживание клиентов и сервисы для всех решений.
  7. Профессиональные услуги – специальные сервисы, такие как интеграция систем, планирование и проектирование.
  8. Руководство проектом – сервисы по управлению проектом, операциями и экосистемой партнеров.

Успешное развертывание решений и получение огромной потенциальной выгоды от Всеобъемлющего Интернета зависит не только от классных вещей и приложений. Для воплощения идей и ожиданий в жизнь необходима комплексная, техническая, операционная и организационная платформа Всеобъемлющего Интернета.

Встраиваемые системы в экосистеме интернета вещей

Мировой рынок встраиваемых систем растет, что обусловлено увеличением спроса на портативные компьютерные устройства и встраиваемые решения M2M. Другими ключевыми драйверами роста в последние годы стали тенденция к автоматизации обрабатывающей промышленности, непрерывная эволюция всепроникающей компьютеризации, а также широкое распространение интернета вещей .

Быстрый рост рынка встраиваемых систем во многом обусловлен стремительным развитием Интернета вещей . Ожидается , что к 2020 году к глобальному Интернету вещей будет подключено более 30 млрд. устройств.

Современная концепция Интернета вещей подразумевает, что все современные устройства независимо от платформы должны иметь возможность совместно функционировать с другими устройствами и сервисами, образуя единую взаимосвязанную экосистему, а не существовать изолированно.

Именно эта предпосылка является одной из основных причин трансформации рынка встраиваемых систем. Сегодня он двигается в направлении разработки интеллектуальных систем (датчиков, машин, механизмов, приборов и т.д.), объединенных в единую глобальную вычислительную сеть с целью получения и обработки данных для повышения эффективности производства (в промышленной сфере) или комфорта и удобства пользователя (на уровне потребителя).

Развертывание таких интеллектуальных систем требует слаженной работы сразу нескольких участников рынка, включая как поставщиков комплектующих (все тех же процессоров, микропроцессоров, контроллеров, датчиков и т.д.), так и производителей конечных продуктов (потребительская электроника, промышленное оборудование, автомобили, самолеты… список поистине безграничен) и производителей программного обеспечения, способных кастомизировать все эти встраиваемые системы для отдельно взятых заказчиков, подключить их к «облакам» и обеспечить их взаимодействие с другими системами в инфраструктуре заказчика.

Сотрудничество производителей встраиваемых решений и разработчиков ПО

При таком значительном росте рынка встраиваемых систем и количестве конечных подключенных к сети и друг к другу устройств уже сейчас чувствуется серьезная потребность в разработчиках программного обеспечения, понимающих всю сложность экосистемы, в которой развиваются производители компонентов, плат, поставщики готовых систем и компании-интеграторы, и обладающих серьезным опытом в области разработки встраиваемых решений.

Говоря проще, кто-то должен «заставить» датчики заговорить на языке производителя устройства или оборудования и конечного пользователя, то есть обеспечить сбор необходимой информации, ее анализ, отображение и взаимодействие с другими системами производителя. Отдельные детали этого «языка» могут отличаться в зависимости от задач конкретного производителя (OEM), а для кастомизации под отдельных заказчиков у производителей датчиков (контроллеров, микропроцессоров и т.д.) не всегда имеются достаточные ресурсы и возможности. Именно на этом этапе требуется поддержка опытной компании-разработчика встраиваемых решений.

Технологические проблемы развития

Есть факторы, способные замедлить развитие интернета вещей. Из них самыми важными считаются три: переход к протоколу IPv6, энергопитание датчиков и принятие общих стандартов.

Дефицит адресов и переход к IPv6

В феврале 2010 года в мире не осталось свободных адресов IPv4 . Хотя рядовые пользователи не нашли в этом ничего страшного, данный факт может существенно замедлить развитие Интернета вещей, поскольку миллиардам новых датчиков понадобятся новые уникальные IP-адреса. Кроме того, IPv6 упрощает управление сетями с помощью автоматической настройки конфигурации и новых, более эффективных функций информационной безопасности .

Питание датчиков

К началу ноября 2014 года разработкой универсальных спецификаций для «умной» электроники и соответствующей программы сертификации занимаются несколько организаций, среди которых альянс



error: Контент защищен !!